Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptmulf.ph |
|- F/ x ph |
2 |
|
dvmptmulf.s |
|- ( ph -> S e. { RR , CC } ) |
3 |
|
dvmptmulf.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
4 |
|
dvmptmulf.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
5 |
|
dvmptmulf.ab |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
6 |
|
dvmptmulf.c |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
7 |
|
dvmptmulf.d |
|- ( ( ph /\ x e. X ) -> D e. W ) |
8 |
|
dvmptmulf.cd |
|- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
9 |
|
nfcv |
|- F/_ y ( A x. C ) |
10 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ A |
11 |
|
nfcv |
|- F/_ x x. |
12 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
13 |
10 11 12
|
nfov |
|- F/_ x ( [_ y / x ]_ A x. [_ y / x ]_ C ) |
14 |
|
csbeq1a |
|- ( x = y -> A = [_ y / x ]_ A ) |
15 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
16 |
14 15
|
oveq12d |
|- ( x = y -> ( A x. C ) = ( [_ y / x ]_ A x. [_ y / x ]_ C ) ) |
17 |
9 13 16
|
cbvmpt |
|- ( x e. X |-> ( A x. C ) ) = ( y e. X |-> ( [_ y / x ]_ A x. [_ y / x ]_ C ) ) |
18 |
17
|
oveq2i |
|- ( S _D ( x e. X |-> ( A x. C ) ) ) = ( S _D ( y e. X |-> ( [_ y / x ]_ A x. [_ y / x ]_ C ) ) ) |
19 |
18
|
a1i |
|- ( ph -> ( S _D ( x e. X |-> ( A x. C ) ) ) = ( S _D ( y e. X |-> ( [_ y / x ]_ A x. [_ y / x ]_ C ) ) ) ) |
20 |
|
nfv |
|- F/ x y e. X |
21 |
1 20
|
nfan |
|- F/ x ( ph /\ y e. X ) |
22 |
10
|
nfel1 |
|- F/ x [_ y / x ]_ A e. CC |
23 |
21 22
|
nfim |
|- F/ x ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. CC ) |
24 |
|
eleq1w |
|- ( x = y -> ( x e. X <-> y e. X ) ) |
25 |
24
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. X ) <-> ( ph /\ y e. X ) ) ) |
26 |
14
|
eleq1d |
|- ( x = y -> ( A e. CC <-> [_ y / x ]_ A e. CC ) ) |
27 |
25 26
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. X ) -> A e. CC ) <-> ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. CC ) ) ) |
28 |
23 27 3
|
chvarfv |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. CC ) |
29 |
|
nfcv |
|- F/_ x y |
30 |
29
|
nfcsb1 |
|- F/_ x [_ y / x ]_ B |
31 |
|
nfcv |
|- F/_ x V |
32 |
30 31
|
nfel |
|- F/ x [_ y / x ]_ B e. V |
33 |
21 32
|
nfim |
|- F/ x ( ( ph /\ y e. X ) -> [_ y / x ]_ B e. V ) |
34 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
35 |
34
|
eleq1d |
|- ( x = y -> ( B e. V <-> [_ y / x ]_ B e. V ) ) |
36 |
25 35
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. X ) -> B e. V ) <-> ( ( ph /\ y e. X ) -> [_ y / x ]_ B e. V ) ) ) |
37 |
33 36 4
|
chvarfv |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ B e. V ) |
38 |
|
nfcv |
|- F/_ y A |
39 |
|
csbeq1a |
|- ( y = x -> [_ y / x ]_ A = [_ x / y ]_ [_ y / x ]_ A ) |
40 |
|
csbcow |
|- [_ x / y ]_ [_ y / x ]_ A = [_ x / x ]_ A |
41 |
|
csbid |
|- [_ x / x ]_ A = A |
42 |
40 41
|
eqtri |
|- [_ x / y ]_ [_ y / x ]_ A = A |
43 |
42
|
a1i |
|- ( y = x -> [_ x / y ]_ [_ y / x ]_ A = A ) |
44 |
39 43
|
eqtrd |
|- ( y = x -> [_ y / x ]_ A = A ) |
45 |
10 38 44
|
cbvmpt |
|- ( y e. X |-> [_ y / x ]_ A ) = ( x e. X |-> A ) |
46 |
45
|
oveq2i |
|- ( S _D ( y e. X |-> [_ y / x ]_ A ) ) = ( S _D ( x e. X |-> A ) ) |
47 |
46
|
a1i |
|- ( ph -> ( S _D ( y e. X |-> [_ y / x ]_ A ) ) = ( S _D ( x e. X |-> A ) ) ) |
48 |
|
nfcv |
|- F/_ y B |
49 |
48 30 34
|
cbvmpt |
|- ( x e. X |-> B ) = ( y e. X |-> [_ y / x ]_ B ) |
50 |
49
|
a1i |
|- ( ph -> ( x e. X |-> B ) = ( y e. X |-> [_ y / x ]_ B ) ) |
51 |
47 5 50
|
3eqtrd |
|- ( ph -> ( S _D ( y e. X |-> [_ y / x ]_ A ) ) = ( y e. X |-> [_ y / x ]_ B ) ) |
52 |
12
|
nfel1 |
|- F/ x [_ y / x ]_ C e. CC |
53 |
21 52
|
nfim |
|- F/ x ( ( ph /\ y e. X ) -> [_ y / x ]_ C e. CC ) |
54 |
15
|
eleq1d |
|- ( x = y -> ( C e. CC <-> [_ y / x ]_ C e. CC ) ) |
55 |
25 54
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. X ) -> C e. CC ) <-> ( ( ph /\ y e. X ) -> [_ y / x ]_ C e. CC ) ) ) |
56 |
53 55 6
|
chvarfv |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ C e. CC ) |
57 |
29
|
nfcsb1 |
|- F/_ x [_ y / x ]_ D |
58 |
|
nfcv |
|- F/_ x W |
59 |
57 58
|
nfel |
|- F/ x [_ y / x ]_ D e. W |
60 |
21 59
|
nfim |
|- F/ x ( ( ph /\ y e. X ) -> [_ y / x ]_ D e. W ) |
61 |
|
csbeq1a |
|- ( x = y -> D = [_ y / x ]_ D ) |
62 |
61
|
eleq1d |
|- ( x = y -> ( D e. W <-> [_ y / x ]_ D e. W ) ) |
63 |
25 62
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. X ) -> D e. W ) <-> ( ( ph /\ y e. X ) -> [_ y / x ]_ D e. W ) ) ) |
64 |
60 63 7
|
chvarfv |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ D e. W ) |
65 |
|
nfcv |
|- F/_ y C |
66 |
|
eqcom |
|- ( x = y <-> y = x ) |
67 |
66
|
imbi1i |
|- ( ( x = y -> C = [_ y / x ]_ C ) <-> ( y = x -> C = [_ y / x ]_ C ) ) |
68 |
|
eqcom |
|- ( C = [_ y / x ]_ C <-> [_ y / x ]_ C = C ) |
69 |
68
|
imbi2i |
|- ( ( y = x -> C = [_ y / x ]_ C ) <-> ( y = x -> [_ y / x ]_ C = C ) ) |
70 |
67 69
|
bitri |
|- ( ( x = y -> C = [_ y / x ]_ C ) <-> ( y = x -> [_ y / x ]_ C = C ) ) |
71 |
15 70
|
mpbi |
|- ( y = x -> [_ y / x ]_ C = C ) |
72 |
12 65 71
|
cbvmpt |
|- ( y e. X |-> [_ y / x ]_ C ) = ( x e. X |-> C ) |
73 |
72
|
oveq2i |
|- ( S _D ( y e. X |-> [_ y / x ]_ C ) ) = ( S _D ( x e. X |-> C ) ) |
74 |
73
|
a1i |
|- ( ph -> ( S _D ( y e. X |-> [_ y / x ]_ C ) ) = ( S _D ( x e. X |-> C ) ) ) |
75 |
|
nfcv |
|- F/_ y D |
76 |
75 57 61
|
cbvmpt |
|- ( x e. X |-> D ) = ( y e. X |-> [_ y / x ]_ D ) |
77 |
76
|
a1i |
|- ( ph -> ( x e. X |-> D ) = ( y e. X |-> [_ y / x ]_ D ) ) |
78 |
74 8 77
|
3eqtrd |
|- ( ph -> ( S _D ( y e. X |-> [_ y / x ]_ C ) ) = ( y e. X |-> [_ y / x ]_ D ) ) |
79 |
2 28 37 51 56 64 78
|
dvmptmul |
|- ( ph -> ( S _D ( y e. X |-> ( [_ y / x ]_ A x. [_ y / x ]_ C ) ) ) = ( y e. X |-> ( ( [_ y / x ]_ B x. [_ y / x ]_ C ) + ( [_ y / x ]_ D x. [_ y / x ]_ A ) ) ) ) |
80 |
30 11 12
|
nfov |
|- F/_ x ( [_ y / x ]_ B x. [_ y / x ]_ C ) |
81 |
|
nfcv |
|- F/_ x + |
82 |
57 11 10
|
nfov |
|- F/_ x ( [_ y / x ]_ D x. [_ y / x ]_ A ) |
83 |
80 81 82
|
nfov |
|- F/_ x ( ( [_ y / x ]_ B x. [_ y / x ]_ C ) + ( [_ y / x ]_ D x. [_ y / x ]_ A ) ) |
84 |
|
nfcv |
|- F/_ y ( ( B x. C ) + ( D x. A ) ) |
85 |
66
|
imbi1i |
|- ( ( x = y -> B = [_ y / x ]_ B ) <-> ( y = x -> B = [_ y / x ]_ B ) ) |
86 |
|
eqcom |
|- ( B = [_ y / x ]_ B <-> [_ y / x ]_ B = B ) |
87 |
86
|
imbi2i |
|- ( ( y = x -> B = [_ y / x ]_ B ) <-> ( y = x -> [_ y / x ]_ B = B ) ) |
88 |
85 87
|
bitri |
|- ( ( x = y -> B = [_ y / x ]_ B ) <-> ( y = x -> [_ y / x ]_ B = B ) ) |
89 |
34 88
|
mpbi |
|- ( y = x -> [_ y / x ]_ B = B ) |
90 |
89 71
|
oveq12d |
|- ( y = x -> ( [_ y / x ]_ B x. [_ y / x ]_ C ) = ( B x. C ) ) |
91 |
66
|
imbi1i |
|- ( ( x = y -> D = [_ y / x ]_ D ) <-> ( y = x -> D = [_ y / x ]_ D ) ) |
92 |
|
eqcom |
|- ( D = [_ y / x ]_ D <-> [_ y / x ]_ D = D ) |
93 |
92
|
imbi2i |
|- ( ( y = x -> D = [_ y / x ]_ D ) <-> ( y = x -> [_ y / x ]_ D = D ) ) |
94 |
91 93
|
bitri |
|- ( ( x = y -> D = [_ y / x ]_ D ) <-> ( y = x -> [_ y / x ]_ D = D ) ) |
95 |
61 94
|
mpbi |
|- ( y = x -> [_ y / x ]_ D = D ) |
96 |
95 44
|
oveq12d |
|- ( y = x -> ( [_ y / x ]_ D x. [_ y / x ]_ A ) = ( D x. A ) ) |
97 |
90 96
|
oveq12d |
|- ( y = x -> ( ( [_ y / x ]_ B x. [_ y / x ]_ C ) + ( [_ y / x ]_ D x. [_ y / x ]_ A ) ) = ( ( B x. C ) + ( D x. A ) ) ) |
98 |
83 84 97
|
cbvmpt |
|- ( y e. X |-> ( ( [_ y / x ]_ B x. [_ y / x ]_ C ) + ( [_ y / x ]_ D x. [_ y / x ]_ A ) ) ) = ( x e. X |-> ( ( B x. C ) + ( D x. A ) ) ) |
99 |
98
|
a1i |
|- ( ph -> ( y e. X |-> ( ( [_ y / x ]_ B x. [_ y / x ]_ C ) + ( [_ y / x ]_ D x. [_ y / x ]_ A ) ) ) = ( x e. X |-> ( ( B x. C ) + ( D x. A ) ) ) ) |
100 |
19 79 99
|
3eqtrd |
|- ( ph -> ( S _D ( x e. X |-> ( A x. C ) ) ) = ( x e. X |-> ( ( B x. C ) + ( D x. A ) ) ) ) |