| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptadd.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvmptadd.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 3 |
|
dvmptadd.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
| 4 |
|
dvmptadd.da |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
| 5 |
|
neg1cn |
|- -u 1 e. CC |
| 6 |
5
|
a1i |
|- ( ph -> -u 1 e. CC ) |
| 7 |
1 2 3 4 6
|
dvmptcmul |
|- ( ph -> ( S _D ( x e. X |-> ( -u 1 x. A ) ) ) = ( x e. X |-> ( -u 1 x. B ) ) ) |
| 8 |
2
|
mulm1d |
|- ( ( ph /\ x e. X ) -> ( -u 1 x. A ) = -u A ) |
| 9 |
8
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( -u 1 x. A ) ) = ( x e. X |-> -u A ) ) |
| 10 |
9
|
oveq2d |
|- ( ph -> ( S _D ( x e. X |-> ( -u 1 x. A ) ) ) = ( S _D ( x e. X |-> -u A ) ) ) |
| 11 |
1 2 3 4
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
| 12 |
11
|
mulm1d |
|- ( ( ph /\ x e. X ) -> ( -u 1 x. B ) = -u B ) |
| 13 |
12
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( -u 1 x. B ) ) = ( x e. X |-> -u B ) ) |
| 14 |
7 10 13
|
3eqtr3d |
|- ( ph -> ( S _D ( x e. X |-> -u A ) ) = ( x e. X |-> -u B ) ) |