Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptntr.s |
|- ( ph -> S C_ CC ) |
2 |
|
dvmptntr.x |
|- ( ph -> X C_ S ) |
3 |
|
dvmptntr.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
4 |
|
dvmptntr.j |
|- J = ( K |`t S ) |
5 |
|
dvmptntr.k |
|- K = ( TopOpen ` CCfld ) |
6 |
|
dvmptntr.i |
|- ( ph -> ( ( int ` J ) ` X ) = Y ) |
7 |
5
|
cnfldtopon |
|- K e. ( TopOn ` CC ) |
8 |
|
resttopon |
|- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
9 |
7 1 8
|
sylancr |
|- ( ph -> ( K |`t S ) e. ( TopOn ` S ) ) |
10 |
4 9
|
eqeltrid |
|- ( ph -> J e. ( TopOn ` S ) ) |
11 |
|
topontop |
|- ( J e. ( TopOn ` S ) -> J e. Top ) |
12 |
10 11
|
syl |
|- ( ph -> J e. Top ) |
13 |
|
toponuni |
|- ( J e. ( TopOn ` S ) -> S = U. J ) |
14 |
10 13
|
syl |
|- ( ph -> S = U. J ) |
15 |
2 14
|
sseqtrd |
|- ( ph -> X C_ U. J ) |
16 |
|
eqid |
|- U. J = U. J |
17 |
16
|
ntridm |
|- ( ( J e. Top /\ X C_ U. J ) -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` X ) ) |
18 |
12 15 17
|
syl2anc |
|- ( ph -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` X ) ) |
19 |
6
|
fveq2d |
|- ( ph -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` Y ) ) |
20 |
18 19
|
eqtr3d |
|- ( ph -> ( ( int ` J ) ` X ) = ( ( int ` J ) ` Y ) ) |
21 |
20
|
reseq2d |
|- ( ph -> ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` X ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Y ) ) ) |
22 |
3
|
fmpttd |
|- ( ph -> ( x e. X |-> A ) : X --> CC ) |
23 |
5 4
|
dvres |
|- ( ( ( S C_ CC /\ ( x e. X |-> A ) : X --> CC ) /\ ( X C_ S /\ X C_ S ) ) -> ( S _D ( ( x e. X |-> A ) |` X ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` X ) ) ) |
24 |
1 22 2 2 23
|
syl22anc |
|- ( ph -> ( S _D ( ( x e. X |-> A ) |` X ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` X ) ) ) |
25 |
16
|
ntrss2 |
|- ( ( J e. Top /\ X C_ U. J ) -> ( ( int ` J ) ` X ) C_ X ) |
26 |
12 15 25
|
syl2anc |
|- ( ph -> ( ( int ` J ) ` X ) C_ X ) |
27 |
6 26
|
eqsstrrd |
|- ( ph -> Y C_ X ) |
28 |
27 2
|
sstrd |
|- ( ph -> Y C_ S ) |
29 |
5 4
|
dvres |
|- ( ( ( S C_ CC /\ ( x e. X |-> A ) : X --> CC ) /\ ( X C_ S /\ Y C_ S ) ) -> ( S _D ( ( x e. X |-> A ) |` Y ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Y ) ) ) |
30 |
1 22 2 28 29
|
syl22anc |
|- ( ph -> ( S _D ( ( x e. X |-> A ) |` Y ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Y ) ) ) |
31 |
21 24 30
|
3eqtr4d |
|- ( ph -> ( S _D ( ( x e. X |-> A ) |` X ) ) = ( S _D ( ( x e. X |-> A ) |` Y ) ) ) |
32 |
|
ssid |
|- X C_ X |
33 |
|
resmpt |
|- ( X C_ X -> ( ( x e. X |-> A ) |` X ) = ( x e. X |-> A ) ) |
34 |
32 33
|
mp1i |
|- ( ph -> ( ( x e. X |-> A ) |` X ) = ( x e. X |-> A ) ) |
35 |
34
|
oveq2d |
|- ( ph -> ( S _D ( ( x e. X |-> A ) |` X ) ) = ( S _D ( x e. X |-> A ) ) ) |
36 |
31 35
|
eqtr3d |
|- ( ph -> ( S _D ( ( x e. X |-> A ) |` Y ) ) = ( S _D ( x e. X |-> A ) ) ) |
37 |
27
|
resmptd |
|- ( ph -> ( ( x e. X |-> A ) |` Y ) = ( x e. Y |-> A ) ) |
38 |
37
|
oveq2d |
|- ( ph -> ( S _D ( ( x e. X |-> A ) |` Y ) ) = ( S _D ( x e. Y |-> A ) ) ) |
39 |
36 38
|
eqtr3d |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( S _D ( x e. Y |-> A ) ) ) |