Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptcj.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
2 |
|
dvmptcj.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
3 |
|
dvmptcj.da |
|- ( ph -> ( RR _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
4 |
|
reelprrecn |
|- RR e. { RR , CC } |
5 |
4
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
6 |
1
|
cjcld |
|- ( ( ph /\ x e. X ) -> ( * ` A ) e. CC ) |
7 |
1 6
|
addcld |
|- ( ( ph /\ x e. X ) -> ( A + ( * ` A ) ) e. CC ) |
8 |
5 1 2 3
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
9 |
8
|
cjcld |
|- ( ( ph /\ x e. X ) -> ( * ` B ) e. CC ) |
10 |
8 9
|
addcld |
|- ( ( ph /\ x e. X ) -> ( B + ( * ` B ) ) e. CC ) |
11 |
1 2 3
|
dvmptcj |
|- ( ph -> ( RR _D ( x e. X |-> ( * ` A ) ) ) = ( x e. X |-> ( * ` B ) ) ) |
12 |
5 1 2 3 6 9 11
|
dvmptadd |
|- ( ph -> ( RR _D ( x e. X |-> ( A + ( * ` A ) ) ) ) = ( x e. X |-> ( B + ( * ` B ) ) ) ) |
13 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
14 |
13
|
a1i |
|- ( ph -> ( 1 / 2 ) e. CC ) |
15 |
5 7 10 12 14
|
dvmptcmul |
|- ( ph -> ( RR _D ( x e. X |-> ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) ) = ( x e. X |-> ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) ) |
16 |
|
reval |
|- ( A e. CC -> ( Re ` A ) = ( ( A + ( * ` A ) ) / 2 ) ) |
17 |
1 16
|
syl |
|- ( ( ph /\ x e. X ) -> ( Re ` A ) = ( ( A + ( * ` A ) ) / 2 ) ) |
18 |
|
2cn |
|- 2 e. CC |
19 |
|
2ne0 |
|- 2 =/= 0 |
20 |
|
divrec2 |
|- ( ( ( A + ( * ` A ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( A + ( * ` A ) ) / 2 ) = ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) |
21 |
18 19 20
|
mp3an23 |
|- ( ( A + ( * ` A ) ) e. CC -> ( ( A + ( * ` A ) ) / 2 ) = ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) |
22 |
7 21
|
syl |
|- ( ( ph /\ x e. X ) -> ( ( A + ( * ` A ) ) / 2 ) = ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) |
23 |
17 22
|
eqtrd |
|- ( ( ph /\ x e. X ) -> ( Re ` A ) = ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) |
24 |
23
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( Re ` A ) ) = ( x e. X |-> ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) ) |
25 |
24
|
oveq2d |
|- ( ph -> ( RR _D ( x e. X |-> ( Re ` A ) ) ) = ( RR _D ( x e. X |-> ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) ) ) |
26 |
|
reval |
|- ( B e. CC -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) |
27 |
8 26
|
syl |
|- ( ( ph /\ x e. X ) -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) |
28 |
|
divrec2 |
|- ( ( ( B + ( * ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( B + ( * ` B ) ) / 2 ) = ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) |
29 |
18 19 28
|
mp3an23 |
|- ( ( B + ( * ` B ) ) e. CC -> ( ( B + ( * ` B ) ) / 2 ) = ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) |
30 |
10 29
|
syl |
|- ( ( ph /\ x e. X ) -> ( ( B + ( * ` B ) ) / 2 ) = ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) |
31 |
27 30
|
eqtrd |
|- ( ( ph /\ x e. X ) -> ( Re ` B ) = ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) |
32 |
31
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( Re ` B ) ) = ( x e. X |-> ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) ) |
33 |
15 25 32
|
3eqtr4d |
|- ( ph -> ( RR _D ( x e. X |-> ( Re ` A ) ) ) = ( x e. X |-> ( Re ` B ) ) ) |