Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptrecl.s |
|- ( ph -> S C_ RR ) |
2 |
|
dvmptrecl.a |
|- ( ( ph /\ x e. S ) -> A e. RR ) |
3 |
|
dvmptrecl.v |
|- ( ( ph /\ x e. S ) -> B e. V ) |
4 |
|
dvmptrecl.b |
|- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
5 |
2
|
fmpttd |
|- ( ph -> ( x e. S |-> A ) : S --> RR ) |
6 |
|
dvfre |
|- ( ( ( x e. S |-> A ) : S --> RR /\ S C_ RR ) -> ( RR _D ( x e. S |-> A ) ) : dom ( RR _D ( x e. S |-> A ) ) --> RR ) |
7 |
5 1 6
|
syl2anc |
|- ( ph -> ( RR _D ( x e. S |-> A ) ) : dom ( RR _D ( x e. S |-> A ) ) --> RR ) |
8 |
4
|
dmeqd |
|- ( ph -> dom ( RR _D ( x e. S |-> A ) ) = dom ( x e. S |-> B ) ) |
9 |
3
|
ralrimiva |
|- ( ph -> A. x e. S B e. V ) |
10 |
|
dmmptg |
|- ( A. x e. S B e. V -> dom ( x e. S |-> B ) = S ) |
11 |
9 10
|
syl |
|- ( ph -> dom ( x e. S |-> B ) = S ) |
12 |
8 11
|
eqtrd |
|- ( ph -> dom ( RR _D ( x e. S |-> A ) ) = S ) |
13 |
4 12
|
feq12d |
|- ( ph -> ( ( RR _D ( x e. S |-> A ) ) : dom ( RR _D ( x e. S |-> A ) ) --> RR <-> ( x e. S |-> B ) : S --> RR ) ) |
14 |
7 13
|
mpbid |
|- ( ph -> ( x e. S |-> B ) : S --> RR ) |
15 |
14
|
fvmptelrn |
|- ( ( ph /\ x e. S ) -> B e. RR ) |