Metamath Proof Explorer


Theorem dvmptres

Description: Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s
|- ( ph -> S e. { RR , CC } )
dvmptadd.a
|- ( ( ph /\ x e. X ) -> A e. CC )
dvmptadd.b
|- ( ( ph /\ x e. X ) -> B e. V )
dvmptadd.da
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) )
dvmptres.y
|- ( ph -> Y C_ X )
dvmptres.j
|- J = ( K |`t S )
dvmptres.k
|- K = ( TopOpen ` CCfld )
dvmptres.t
|- ( ph -> Y e. J )
Assertion dvmptres
|- ( ph -> ( S _D ( x e. Y |-> A ) ) = ( x e. Y |-> B ) )

Proof

Step Hyp Ref Expression
1 dvmptadd.s
 |-  ( ph -> S e. { RR , CC } )
2 dvmptadd.a
 |-  ( ( ph /\ x e. X ) -> A e. CC )
3 dvmptadd.b
 |-  ( ( ph /\ x e. X ) -> B e. V )
4 dvmptadd.da
 |-  ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) )
5 dvmptres.y
 |-  ( ph -> Y C_ X )
6 dvmptres.j
 |-  J = ( K |`t S )
7 dvmptres.k
 |-  K = ( TopOpen ` CCfld )
8 dvmptres.t
 |-  ( ph -> Y e. J )
9 7 cnfldtop
 |-  K e. Top
10 resttop
 |-  ( ( K e. Top /\ S e. { RR , CC } ) -> ( K |`t S ) e. Top )
11 9 1 10 sylancr
 |-  ( ph -> ( K |`t S ) e. Top )
12 6 11 eqeltrid
 |-  ( ph -> J e. Top )
13 isopn3i
 |-  ( ( J e. Top /\ Y e. J ) -> ( ( int ` J ) ` Y ) = Y )
14 12 8 13 syl2anc
 |-  ( ph -> ( ( int ` J ) ` Y ) = Y )
15 1 2 3 4 5 6 7 14 dvmptres2
 |-  ( ph -> ( S _D ( x e. Y |-> A ) ) = ( x e. Y |-> B ) )