Description: Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
dvmptres.y | |- ( ph -> Y C_ X ) |
||
dvmptres.j | |- J = ( K |`t S ) |
||
dvmptres.k | |- K = ( TopOpen ` CCfld ) |
||
dvmptres.t | |- ( ph -> Y e. J ) |
||
Assertion | dvmptres | |- ( ph -> ( S _D ( x e. Y |-> A ) ) = ( x e. Y |-> B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
2 | dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
3 | dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
4 | dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
5 | dvmptres.y | |- ( ph -> Y C_ X ) |
|
6 | dvmptres.j | |- J = ( K |`t S ) |
|
7 | dvmptres.k | |- K = ( TopOpen ` CCfld ) |
|
8 | dvmptres.t | |- ( ph -> Y e. J ) |
|
9 | 7 | cnfldtop | |- K e. Top |
10 | resttop | |- ( ( K e. Top /\ S e. { RR , CC } ) -> ( K |`t S ) e. Top ) |
|
11 | 9 1 10 | sylancr | |- ( ph -> ( K |`t S ) e. Top ) |
12 | 6 11 | eqeltrid | |- ( ph -> J e. Top ) |
13 | isopn3i | |- ( ( J e. Top /\ Y e. J ) -> ( ( int ` J ) ` Y ) = Y ) |
|
14 | 12 8 13 | syl2anc | |- ( ph -> ( ( int ` J ) ` Y ) = Y ) |
15 | 1 2 3 4 5 6 7 14 | dvmptres2 | |- ( ph -> ( S _D ( x e. Y |-> A ) ) = ( x e. Y |-> B ) ) |