| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptadd.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvmptadd.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 3 |
|
dvmptadd.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
| 4 |
|
dvmptadd.da |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
| 5 |
|
dvmptres2.z |
|- ( ph -> Z C_ X ) |
| 6 |
|
dvmptres2.j |
|- J = ( K |`t S ) |
| 7 |
|
dvmptres2.k |
|- K = ( TopOpen ` CCfld ) |
| 8 |
|
dvmptres2.i |
|- ( ph -> ( ( int ` J ) ` Z ) = Y ) |
| 9 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 10 |
1 9
|
syl |
|- ( ph -> S C_ CC ) |
| 11 |
2
|
fmpttd |
|- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 12 |
4
|
dmeqd |
|- ( ph -> dom ( S _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 13 |
3
|
ralrimiva |
|- ( ph -> A. x e. X B e. V ) |
| 14 |
|
dmmptg |
|- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
| 15 |
13 14
|
syl |
|- ( ph -> dom ( x e. X |-> B ) = X ) |
| 16 |
12 15
|
eqtrd |
|- ( ph -> dom ( S _D ( x e. X |-> A ) ) = X ) |
| 17 |
|
dvbsss |
|- dom ( S _D ( x e. X |-> A ) ) C_ S |
| 18 |
16 17
|
eqsstrrdi |
|- ( ph -> X C_ S ) |
| 19 |
5 18
|
sstrd |
|- ( ph -> Z C_ S ) |
| 20 |
7 6
|
dvres |
|- ( ( ( S C_ CC /\ ( x e. X |-> A ) : X --> CC ) /\ ( X C_ S /\ Z C_ S ) ) -> ( S _D ( ( x e. X |-> A ) |` Z ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Z ) ) ) |
| 21 |
10 11 18 19 20
|
syl22anc |
|- ( ph -> ( S _D ( ( x e. X |-> A ) |` Z ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Z ) ) ) |
| 22 |
5
|
resmptd |
|- ( ph -> ( ( x e. X |-> A ) |` Z ) = ( x e. Z |-> A ) ) |
| 23 |
22
|
oveq2d |
|- ( ph -> ( S _D ( ( x e. X |-> A ) |` Z ) ) = ( S _D ( x e. Z |-> A ) ) ) |
| 24 |
4
|
reseq1d |
|- ( ph -> ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Z ) ) = ( ( x e. X |-> B ) |` ( ( int ` J ) ` Z ) ) ) |
| 25 |
8
|
reseq2d |
|- ( ph -> ( ( x e. X |-> B ) |` ( ( int ` J ) ` Z ) ) = ( ( x e. X |-> B ) |` Y ) ) |
| 26 |
7
|
cnfldtopon |
|- K e. ( TopOn ` CC ) |
| 27 |
|
resttopon |
|- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
| 28 |
26 10 27
|
sylancr |
|- ( ph -> ( K |`t S ) e. ( TopOn ` S ) ) |
| 29 |
6 28
|
eqeltrid |
|- ( ph -> J e. ( TopOn ` S ) ) |
| 30 |
|
topontop |
|- ( J e. ( TopOn ` S ) -> J e. Top ) |
| 31 |
29 30
|
syl |
|- ( ph -> J e. Top ) |
| 32 |
|
toponuni |
|- ( J e. ( TopOn ` S ) -> S = U. J ) |
| 33 |
29 32
|
syl |
|- ( ph -> S = U. J ) |
| 34 |
19 33
|
sseqtrd |
|- ( ph -> Z C_ U. J ) |
| 35 |
|
eqid |
|- U. J = U. J |
| 36 |
35
|
ntrss2 |
|- ( ( J e. Top /\ Z C_ U. J ) -> ( ( int ` J ) ` Z ) C_ Z ) |
| 37 |
31 34 36
|
syl2anc |
|- ( ph -> ( ( int ` J ) ` Z ) C_ Z ) |
| 38 |
8 37
|
eqsstrrd |
|- ( ph -> Y C_ Z ) |
| 39 |
38 5
|
sstrd |
|- ( ph -> Y C_ X ) |
| 40 |
39
|
resmptd |
|- ( ph -> ( ( x e. X |-> B ) |` Y ) = ( x e. Y |-> B ) ) |
| 41 |
24 25 40
|
3eqtrd |
|- ( ph -> ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Z ) ) = ( x e. Y |-> B ) ) |
| 42 |
21 23 41
|
3eqtr3d |
|- ( ph -> ( S _D ( x e. Z |-> A ) ) = ( x e. Y |-> B ) ) |