Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptres3.j |
|- J = ( TopOpen ` CCfld ) |
2 |
|
dvmptres3.s |
|- ( ph -> S e. { RR , CC } ) |
3 |
|
dvmptres3.x |
|- ( ph -> X e. J ) |
4 |
|
dvmptres3.y |
|- ( ph -> ( S i^i X ) = Y ) |
5 |
|
dvmptres3.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
6 |
|
dvmptres3.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
7 |
|
dvmptres3.d |
|- ( ph -> ( CC _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
8 |
5
|
fmpttd |
|- ( ph -> ( x e. X |-> A ) : X --> CC ) |
9 |
7
|
dmeqd |
|- ( ph -> dom ( CC _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
10 |
|
eqid |
|- ( x e. X |-> B ) = ( x e. X |-> B ) |
11 |
10 6
|
dmmptd |
|- ( ph -> dom ( x e. X |-> B ) = X ) |
12 |
9 11
|
eqtrd |
|- ( ph -> dom ( CC _D ( x e. X |-> A ) ) = X ) |
13 |
1
|
dvres3a |
|- ( ( ( S e. { RR , CC } /\ ( x e. X |-> A ) : X --> CC ) /\ ( X e. J /\ dom ( CC _D ( x e. X |-> A ) ) = X ) ) -> ( S _D ( ( x e. X |-> A ) |` S ) ) = ( ( CC _D ( x e. X |-> A ) ) |` S ) ) |
14 |
2 8 3 12 13
|
syl22anc |
|- ( ph -> ( S _D ( ( x e. X |-> A ) |` S ) ) = ( ( CC _D ( x e. X |-> A ) ) |` S ) ) |
15 |
|
rescom |
|- ( ( ( x e. X |-> A ) |` X ) |` S ) = ( ( ( x e. X |-> A ) |` S ) |` X ) |
16 |
|
resres |
|- ( ( ( x e. X |-> A ) |` S ) |` X ) = ( ( x e. X |-> A ) |` ( S i^i X ) ) |
17 |
15 16
|
eqtri |
|- ( ( ( x e. X |-> A ) |` X ) |` S ) = ( ( x e. X |-> A ) |` ( S i^i X ) ) |
18 |
4
|
reseq2d |
|- ( ph -> ( ( x e. X |-> A ) |` ( S i^i X ) ) = ( ( x e. X |-> A ) |` Y ) ) |
19 |
17 18
|
syl5eq |
|- ( ph -> ( ( ( x e. X |-> A ) |` X ) |` S ) = ( ( x e. X |-> A ) |` Y ) ) |
20 |
|
ffn |
|- ( ( x e. X |-> A ) : X --> CC -> ( x e. X |-> A ) Fn X ) |
21 |
|
fnresdm |
|- ( ( x e. X |-> A ) Fn X -> ( ( x e. X |-> A ) |` X ) = ( x e. X |-> A ) ) |
22 |
8 20 21
|
3syl |
|- ( ph -> ( ( x e. X |-> A ) |` X ) = ( x e. X |-> A ) ) |
23 |
22
|
reseq1d |
|- ( ph -> ( ( ( x e. X |-> A ) |` X ) |` S ) = ( ( x e. X |-> A ) |` S ) ) |
24 |
|
inss2 |
|- ( S i^i X ) C_ X |
25 |
4 24
|
eqsstrrdi |
|- ( ph -> Y C_ X ) |
26 |
25
|
resmptd |
|- ( ph -> ( ( x e. X |-> A ) |` Y ) = ( x e. Y |-> A ) ) |
27 |
19 23 26
|
3eqtr3d |
|- ( ph -> ( ( x e. X |-> A ) |` S ) = ( x e. Y |-> A ) ) |
28 |
27
|
oveq2d |
|- ( ph -> ( S _D ( ( x e. X |-> A ) |` S ) ) = ( S _D ( x e. Y |-> A ) ) ) |
29 |
|
rescom |
|- ( ( ( x e. X |-> B ) |` X ) |` S ) = ( ( ( x e. X |-> B ) |` S ) |` X ) |
30 |
|
resres |
|- ( ( ( x e. X |-> B ) |` S ) |` X ) = ( ( x e. X |-> B ) |` ( S i^i X ) ) |
31 |
29 30
|
eqtri |
|- ( ( ( x e. X |-> B ) |` X ) |` S ) = ( ( x e. X |-> B ) |` ( S i^i X ) ) |
32 |
4
|
reseq2d |
|- ( ph -> ( ( x e. X |-> B ) |` ( S i^i X ) ) = ( ( x e. X |-> B ) |` Y ) ) |
33 |
31 32
|
syl5eq |
|- ( ph -> ( ( ( x e. X |-> B ) |` X ) |` S ) = ( ( x e. X |-> B ) |` Y ) ) |
34 |
6
|
ralrimiva |
|- ( ph -> A. x e. X B e. V ) |
35 |
10
|
fnmpt |
|- ( A. x e. X B e. V -> ( x e. X |-> B ) Fn X ) |
36 |
|
fnresdm |
|- ( ( x e. X |-> B ) Fn X -> ( ( x e. X |-> B ) |` X ) = ( x e. X |-> B ) ) |
37 |
34 35 36
|
3syl |
|- ( ph -> ( ( x e. X |-> B ) |` X ) = ( x e. X |-> B ) ) |
38 |
37 7
|
eqtr4d |
|- ( ph -> ( ( x e. X |-> B ) |` X ) = ( CC _D ( x e. X |-> A ) ) ) |
39 |
38
|
reseq1d |
|- ( ph -> ( ( ( x e. X |-> B ) |` X ) |` S ) = ( ( CC _D ( x e. X |-> A ) ) |` S ) ) |
40 |
25
|
resmptd |
|- ( ph -> ( ( x e. X |-> B ) |` Y ) = ( x e. Y |-> B ) ) |
41 |
33 39 40
|
3eqtr3d |
|- ( ph -> ( ( CC _D ( x e. X |-> A ) ) |` S ) = ( x e. Y |-> B ) ) |
42 |
14 28 41
|
3eqtr3d |
|- ( ph -> ( S _D ( x e. Y |-> A ) ) = ( x e. Y |-> B ) ) |