Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptresicc.f |
|- F = ( x e. CC |-> A ) |
2 |
|
dvmptresicc.a |
|- ( ( ph /\ x e. CC ) -> A e. CC ) |
3 |
|
dvmptresicc.fdv |
|- ( ph -> ( CC _D F ) = ( x e. CC |-> B ) ) |
4 |
|
dvmptresicc.b |
|- ( ( ph /\ x e. CC ) -> B e. CC ) |
5 |
|
dvmptresicc.c |
|- ( ph -> C e. RR ) |
6 |
|
dvmptresicc.d |
|- ( ph -> D e. RR ) |
7 |
1
|
reseq1i |
|- ( F |` ( C [,] D ) ) = ( ( x e. CC |-> A ) |` ( C [,] D ) ) |
8 |
5 6
|
iccssred |
|- ( ph -> ( C [,] D ) C_ RR ) |
9 |
|
ax-resscn |
|- RR C_ CC |
10 |
9
|
a1i |
|- ( ph -> RR C_ CC ) |
11 |
8 10
|
sstrd |
|- ( ph -> ( C [,] D ) C_ CC ) |
12 |
11
|
resmptd |
|- ( ph -> ( ( x e. CC |-> A ) |` ( C [,] D ) ) = ( x e. ( C [,] D ) |-> A ) ) |
13 |
7 12
|
syl5eq |
|- ( ph -> ( F |` ( C [,] D ) ) = ( x e. ( C [,] D ) |-> A ) ) |
14 |
13
|
oveq2d |
|- ( ph -> ( RR _D ( F |` ( C [,] D ) ) ) = ( RR _D ( x e. ( C [,] D ) |-> A ) ) ) |
15 |
8
|
resabs1d |
|- ( ph -> ( ( F |` RR ) |` ( C [,] D ) ) = ( F |` ( C [,] D ) ) ) |
16 |
15
|
eqcomd |
|- ( ph -> ( F |` ( C [,] D ) ) = ( ( F |` RR ) |` ( C [,] D ) ) ) |
17 |
16
|
oveq2d |
|- ( ph -> ( RR _D ( F |` ( C [,] D ) ) ) = ( RR _D ( ( F |` RR ) |` ( C [,] D ) ) ) ) |
18 |
2 1
|
fmptd |
|- ( ph -> F : CC --> CC ) |
19 |
18 10
|
fssresd |
|- ( ph -> ( F |` RR ) : RR --> CC ) |
20 |
|
ssidd |
|- ( ph -> RR C_ RR ) |
21 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
22 |
21
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
23 |
21 22
|
dvres |
|- ( ( ( RR C_ CC /\ ( F |` RR ) : RR --> CC ) /\ ( RR C_ RR /\ ( C [,] D ) C_ RR ) ) -> ( RR _D ( ( F |` RR ) |` ( C [,] D ) ) ) = ( ( RR _D ( F |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) ) |
24 |
10 19 20 8 23
|
syl22anc |
|- ( ph -> ( RR _D ( ( F |` RR ) |` ( C [,] D ) ) ) = ( ( RR _D ( F |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) ) |
25 |
|
reelprrecn |
|- RR e. { RR , CC } |
26 |
25
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
27 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
28 |
3
|
dmeqd |
|- ( ph -> dom ( CC _D F ) = dom ( x e. CC |-> B ) ) |
29 |
4
|
ralrimiva |
|- ( ph -> A. x e. CC B e. CC ) |
30 |
|
dmmptg |
|- ( A. x e. CC B e. CC -> dom ( x e. CC |-> B ) = CC ) |
31 |
29 30
|
syl |
|- ( ph -> dom ( x e. CC |-> B ) = CC ) |
32 |
28 31
|
eqtr2d |
|- ( ph -> CC = dom ( CC _D F ) ) |
33 |
10 32
|
sseqtrd |
|- ( ph -> RR C_ dom ( CC _D F ) ) |
34 |
|
dvres3 |
|- ( ( ( RR e. { RR , CC } /\ F : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D F ) ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
35 |
26 18 27 33 34
|
syl22anc |
|- ( ph -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
36 |
|
iccntr |
|- ( ( C e. RR /\ D e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) = ( C (,) D ) ) |
37 |
5 6 36
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) = ( C (,) D ) ) |
38 |
35 37
|
reseq12d |
|- ( ph -> ( ( RR _D ( F |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) = ( ( ( CC _D F ) |` RR ) |` ( C (,) D ) ) ) |
39 |
|
ioossre |
|- ( C (,) D ) C_ RR |
40 |
|
resabs1 |
|- ( ( C (,) D ) C_ RR -> ( ( ( CC _D F ) |` RR ) |` ( C (,) D ) ) = ( ( CC _D F ) |` ( C (,) D ) ) ) |
41 |
39 40
|
mp1i |
|- ( ph -> ( ( ( CC _D F ) |` RR ) |` ( C (,) D ) ) = ( ( CC _D F ) |` ( C (,) D ) ) ) |
42 |
3
|
reseq1d |
|- ( ph -> ( ( CC _D F ) |` ( C (,) D ) ) = ( ( x e. CC |-> B ) |` ( C (,) D ) ) ) |
43 |
|
ioosscn |
|- ( C (,) D ) C_ CC |
44 |
|
resmpt |
|- ( ( C (,) D ) C_ CC -> ( ( x e. CC |-> B ) |` ( C (,) D ) ) = ( x e. ( C (,) D ) |-> B ) ) |
45 |
43 44
|
mp1i |
|- ( ph -> ( ( x e. CC |-> B ) |` ( C (,) D ) ) = ( x e. ( C (,) D ) |-> B ) ) |
46 |
42 45
|
eqtrd |
|- ( ph -> ( ( CC _D F ) |` ( C (,) D ) ) = ( x e. ( C (,) D ) |-> B ) ) |
47 |
38 41 46
|
3eqtrd |
|- ( ph -> ( ( RR _D ( F |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] D ) ) ) = ( x e. ( C (,) D ) |-> B ) ) |
48 |
17 24 47
|
3eqtrd |
|- ( ph -> ( RR _D ( F |` ( C [,] D ) ) ) = ( x e. ( C (,) D ) |-> B ) ) |
49 |
14 48
|
eqtr3d |
|- ( ph -> ( RR _D ( x e. ( C [,] D ) |-> A ) ) = ( x e. ( C (,) D ) |-> B ) ) |