Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptadd.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvmptadd.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
3 |
|
dvmptadd.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
4 |
|
dvmptadd.da |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
5 |
|
dvmptsub.c |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
6 |
|
dvmptsub.d |
|- ( ( ph /\ x e. X ) -> D e. W ) |
7 |
|
dvmptsub.dc |
|- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
8 |
5
|
negcld |
|- ( ( ph /\ x e. X ) -> -u C e. CC ) |
9 |
|
negex |
|- -u D e. _V |
10 |
9
|
a1i |
|- ( ( ph /\ x e. X ) -> -u D e. _V ) |
11 |
1 5 6 7
|
dvmptneg |
|- ( ph -> ( S _D ( x e. X |-> -u C ) ) = ( x e. X |-> -u D ) ) |
12 |
1 2 3 4 8 10 11
|
dvmptadd |
|- ( ph -> ( S _D ( x e. X |-> ( A + -u C ) ) ) = ( x e. X |-> ( B + -u D ) ) ) |
13 |
2 5
|
negsubd |
|- ( ( ph /\ x e. X ) -> ( A + -u C ) = ( A - C ) ) |
14 |
13
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A + -u C ) ) = ( x e. X |-> ( A - C ) ) ) |
15 |
14
|
oveq2d |
|- ( ph -> ( S _D ( x e. X |-> ( A + -u C ) ) ) = ( S _D ( x e. X |-> ( A - C ) ) ) ) |
16 |
1 2 3 4
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
17 |
1 5 6 7
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> D e. CC ) |
18 |
16 17
|
negsubd |
|- ( ( ph /\ x e. X ) -> ( B + -u D ) = ( B - D ) ) |
19 |
18
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( B + -u D ) ) = ( x e. X |-> ( B - D ) ) ) |
20 |
12 15 19
|
3eqtr3d |
|- ( ph -> ( S _D ( x e. X |-> ( A - C ) ) ) = ( x e. X |-> ( B - D ) ) ) |