Step |
Hyp |
Ref |
Expression |
1 |
|
dvadd.f |
|- ( ph -> F : X --> CC ) |
2 |
|
dvadd.x |
|- ( ph -> X C_ S ) |
3 |
|
dvadd.g |
|- ( ph -> G : Y --> CC ) |
4 |
|
dvadd.y |
|- ( ph -> Y C_ S ) |
5 |
|
dvadd.s |
|- ( ph -> S e. { RR , CC } ) |
6 |
|
dvadd.df |
|- ( ph -> C e. dom ( S _D F ) ) |
7 |
|
dvadd.dg |
|- ( ph -> C e. dom ( S _D G ) ) |
8 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC ) |
9 |
|
ffun |
|- ( ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC -> Fun ( S _D ( F oF x. G ) ) ) |
10 |
5 8 9
|
3syl |
|- ( ph -> Fun ( S _D ( F oF x. G ) ) ) |
11 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
12 |
5 11
|
syl |
|- ( ph -> S C_ CC ) |
13 |
|
fvexd |
|- ( ph -> ( ( S _D F ) ` C ) e. _V ) |
14 |
|
fvexd |
|- ( ph -> ( ( S _D G ) ` C ) e. _V ) |
15 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
16 |
|
ffun |
|- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
17 |
|
funfvbrb |
|- ( Fun ( S _D F ) -> ( C e. dom ( S _D F ) <-> C ( S _D F ) ( ( S _D F ) ` C ) ) ) |
18 |
5 15 16 17
|
4syl |
|- ( ph -> ( C e. dom ( S _D F ) <-> C ( S _D F ) ( ( S _D F ) ` C ) ) ) |
19 |
6 18
|
mpbid |
|- ( ph -> C ( S _D F ) ( ( S _D F ) ` C ) ) |
20 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
21 |
|
ffun |
|- ( ( S _D G ) : dom ( S _D G ) --> CC -> Fun ( S _D G ) ) |
22 |
|
funfvbrb |
|- ( Fun ( S _D G ) -> ( C e. dom ( S _D G ) <-> C ( S _D G ) ( ( S _D G ) ` C ) ) ) |
23 |
5 20 21 22
|
4syl |
|- ( ph -> ( C e. dom ( S _D G ) <-> C ( S _D G ) ( ( S _D G ) ` C ) ) ) |
24 |
7 23
|
mpbid |
|- ( ph -> C ( S _D G ) ( ( S _D G ) ` C ) ) |
25 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
26 |
1 2 3 4 12 13 14 19 24 25
|
dvmulbr |
|- ( ph -> C ( S _D ( F oF x. G ) ) ( ( ( ( S _D F ) ` C ) x. ( G ` C ) ) + ( ( ( S _D G ) ` C ) x. ( F ` C ) ) ) ) |
27 |
|
funbrfv |
|- ( Fun ( S _D ( F oF x. G ) ) -> ( C ( S _D ( F oF x. G ) ) ( ( ( ( S _D F ) ` C ) x. ( G ` C ) ) + ( ( ( S _D G ) ` C ) x. ( F ` C ) ) ) -> ( ( S _D ( F oF x. G ) ) ` C ) = ( ( ( ( S _D F ) ` C ) x. ( G ` C ) ) + ( ( ( S _D G ) ` C ) x. ( F ` C ) ) ) ) ) |
28 |
10 26 27
|
sylc |
|- ( ph -> ( ( S _D ( F oF x. G ) ) ` C ) = ( ( ( ( S _D F ) ` C ) x. ( G ` C ) ) + ( ( ( S _D G ) ` C ) x. ( F ` C ) ) ) ) |