Step |
Hyp |
Ref |
Expression |
1 |
|
dvmulcncf.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvmulcncf.f |
|- ( ph -> F : X --> CC ) |
3 |
|
dvmulcncf.g |
|- ( ph -> G : X --> CC ) |
4 |
|
dvmulcncf.fdv |
|- ( ph -> ( S _D F ) e. ( X -cn-> CC ) ) |
5 |
|
dvmulcncf.gdv |
|- ( ph -> ( S _D G ) e. ( X -cn-> CC ) ) |
6 |
|
cncff |
|- ( ( S _D F ) e. ( X -cn-> CC ) -> ( S _D F ) : X --> CC ) |
7 |
|
fdm |
|- ( ( S _D F ) : X --> CC -> dom ( S _D F ) = X ) |
8 |
4 6 7
|
3syl |
|- ( ph -> dom ( S _D F ) = X ) |
9 |
|
cncff |
|- ( ( S _D G ) e. ( X -cn-> CC ) -> ( S _D G ) : X --> CC ) |
10 |
|
fdm |
|- ( ( S _D G ) : X --> CC -> dom ( S _D G ) = X ) |
11 |
5 9 10
|
3syl |
|- ( ph -> dom ( S _D G ) = X ) |
12 |
1 2 3 8 11
|
dvmulf |
|- ( ph -> ( S _D ( F oF x. G ) ) = ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) ) |
13 |
|
ax-resscn |
|- RR C_ CC |
14 |
|
sseq1 |
|- ( S = RR -> ( S C_ CC <-> RR C_ CC ) ) |
15 |
13 14
|
mpbiri |
|- ( S = RR -> S C_ CC ) |
16 |
|
eqimss |
|- ( S = CC -> S C_ CC ) |
17 |
15 16
|
pm3.2i |
|- ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) |
18 |
|
elpri |
|- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
19 |
1 18
|
syl |
|- ( ph -> ( S = RR \/ S = CC ) ) |
20 |
|
pm3.44 |
|- ( ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) -> ( ( S = RR \/ S = CC ) -> S C_ CC ) ) |
21 |
17 19 20
|
mpsyl |
|- ( ph -> S C_ CC ) |
22 |
|
dvbsss |
|- dom ( S _D F ) C_ S |
23 |
8 22
|
eqsstrrdi |
|- ( ph -> X C_ S ) |
24 |
|
dvcn |
|- ( ( ( S C_ CC /\ G : X --> CC /\ X C_ S ) /\ dom ( S _D G ) = X ) -> G e. ( X -cn-> CC ) ) |
25 |
21 3 23 11 24
|
syl31anc |
|- ( ph -> G e. ( X -cn-> CC ) ) |
26 |
4 25
|
mulcncff |
|- ( ph -> ( ( S _D F ) oF x. G ) e. ( X -cn-> CC ) ) |
27 |
|
dvcn |
|- ( ( ( S C_ CC /\ F : X --> CC /\ X C_ S ) /\ dom ( S _D F ) = X ) -> F e. ( X -cn-> CC ) ) |
28 |
21 2 23 8 27
|
syl31anc |
|- ( ph -> F e. ( X -cn-> CC ) ) |
29 |
5 28
|
mulcncff |
|- ( ph -> ( ( S _D G ) oF x. F ) e. ( X -cn-> CC ) ) |
30 |
26 29
|
addcncff |
|- ( ph -> ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) e. ( X -cn-> CC ) ) |
31 |
12 30
|
eqeltrd |
|- ( ph -> ( S _D ( F oF x. G ) ) e. ( X -cn-> CC ) ) |