Step |
Hyp |
Ref |
Expression |
1 |
|
dvaddf.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvaddf.f |
|- ( ph -> F : X --> CC ) |
3 |
|
dvaddf.g |
|- ( ph -> G : X --> CC ) |
4 |
|
dvaddf.df |
|- ( ph -> dom ( S _D F ) = X ) |
5 |
|
dvaddf.dg |
|- ( ph -> dom ( S _D G ) = X ) |
6 |
2
|
adantr |
|- ( ( ph /\ x e. X ) -> F : X --> CC ) |
7 |
|
dvbsss |
|- dom ( S _D F ) C_ S |
8 |
4 7
|
eqsstrrdi |
|- ( ph -> X C_ S ) |
9 |
8
|
adantr |
|- ( ( ph /\ x e. X ) -> X C_ S ) |
10 |
3
|
adantr |
|- ( ( ph /\ x e. X ) -> G : X --> CC ) |
11 |
1
|
adantr |
|- ( ( ph /\ x e. X ) -> S e. { RR , CC } ) |
12 |
4
|
eleq2d |
|- ( ph -> ( x e. dom ( S _D F ) <-> x e. X ) ) |
13 |
12
|
biimpar |
|- ( ( ph /\ x e. X ) -> x e. dom ( S _D F ) ) |
14 |
5
|
eleq2d |
|- ( ph -> ( x e. dom ( S _D G ) <-> x e. X ) ) |
15 |
14
|
biimpar |
|- ( ( ph /\ x e. X ) -> x e. dom ( S _D G ) ) |
16 |
6 9 10 9 11 13 15
|
dvmul |
|- ( ( ph /\ x e. X ) -> ( ( S _D ( F oF x. G ) ) ` x ) = ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) |
17 |
16
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( ( S _D ( F oF x. G ) ) ` x ) ) = ( x e. X |-> ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) ) |
18 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC ) |
19 |
1 18
|
syl |
|- ( ph -> ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC ) |
20 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
21 |
1 20
|
syl |
|- ( ph -> S C_ CC ) |
22 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
23 |
22
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
24 |
1 8
|
ssexd |
|- ( ph -> X e. _V ) |
25 |
|
inidm |
|- ( X i^i X ) = X |
26 |
23 2 3 24 24 25
|
off |
|- ( ph -> ( F oF x. G ) : X --> CC ) |
27 |
21 26 8
|
dvbss |
|- ( ph -> dom ( S _D ( F oF x. G ) ) C_ X ) |
28 |
21
|
adantr |
|- ( ( ph /\ x e. X ) -> S C_ CC ) |
29 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. _V ) |
30 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( ( S _D G ) ` x ) e. _V ) |
31 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
32 |
1 31
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
33 |
32
|
adantr |
|- ( ( ph /\ x e. X ) -> ( S _D F ) : dom ( S _D F ) --> CC ) |
34 |
|
ffun |
|- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
35 |
|
funfvbrb |
|- ( Fun ( S _D F ) -> ( x e. dom ( S _D F ) <-> x ( S _D F ) ( ( S _D F ) ` x ) ) ) |
36 |
33 34 35
|
3syl |
|- ( ( ph /\ x e. X ) -> ( x e. dom ( S _D F ) <-> x ( S _D F ) ( ( S _D F ) ` x ) ) ) |
37 |
13 36
|
mpbid |
|- ( ( ph /\ x e. X ) -> x ( S _D F ) ( ( S _D F ) ` x ) ) |
38 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
39 |
1 38
|
syl |
|- ( ph -> ( S _D G ) : dom ( S _D G ) --> CC ) |
40 |
39
|
adantr |
|- ( ( ph /\ x e. X ) -> ( S _D G ) : dom ( S _D G ) --> CC ) |
41 |
|
ffun |
|- ( ( S _D G ) : dom ( S _D G ) --> CC -> Fun ( S _D G ) ) |
42 |
|
funfvbrb |
|- ( Fun ( S _D G ) -> ( x e. dom ( S _D G ) <-> x ( S _D G ) ( ( S _D G ) ` x ) ) ) |
43 |
40 41 42
|
3syl |
|- ( ( ph /\ x e. X ) -> ( x e. dom ( S _D G ) <-> x ( S _D G ) ( ( S _D G ) ` x ) ) ) |
44 |
15 43
|
mpbid |
|- ( ( ph /\ x e. X ) -> x ( S _D G ) ( ( S _D G ) ` x ) ) |
45 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
46 |
6 9 10 9 28 29 30 37 44 45
|
dvmulbr |
|- ( ( ph /\ x e. X ) -> x ( S _D ( F oF x. G ) ) ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) |
47 |
|
reldv |
|- Rel ( S _D ( F oF x. G ) ) |
48 |
47
|
releldmi |
|- ( x ( S _D ( F oF x. G ) ) ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) -> x e. dom ( S _D ( F oF x. G ) ) ) |
49 |
46 48
|
syl |
|- ( ( ph /\ x e. X ) -> x e. dom ( S _D ( F oF x. G ) ) ) |
50 |
27 49
|
eqelssd |
|- ( ph -> dom ( S _D ( F oF x. G ) ) = X ) |
51 |
50
|
feq2d |
|- ( ph -> ( ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC <-> ( S _D ( F oF x. G ) ) : X --> CC ) ) |
52 |
19 51
|
mpbid |
|- ( ph -> ( S _D ( F oF x. G ) ) : X --> CC ) |
53 |
52
|
feqmptd |
|- ( ph -> ( S _D ( F oF x. G ) ) = ( x e. X |-> ( ( S _D ( F oF x. G ) ) ` x ) ) ) |
54 |
|
ovexd |
|- ( ( ph /\ x e. X ) -> ( ( ( S _D F ) ` x ) x. ( G ` x ) ) e. _V ) |
55 |
|
ovexd |
|- ( ( ph /\ x e. X ) -> ( ( ( S _D G ) ` x ) x. ( F ` x ) ) e. _V ) |
56 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. _V ) |
57 |
4
|
feq2d |
|- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
58 |
32 57
|
mpbid |
|- ( ph -> ( S _D F ) : X --> CC ) |
59 |
58
|
feqmptd |
|- ( ph -> ( S _D F ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
60 |
3
|
feqmptd |
|- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
61 |
24 29 56 59 60
|
offval2 |
|- ( ph -> ( ( S _D F ) oF x. G ) = ( x e. X |-> ( ( ( S _D F ) ` x ) x. ( G ` x ) ) ) ) |
62 |
|
fvexd |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. _V ) |
63 |
5
|
feq2d |
|- ( ph -> ( ( S _D G ) : dom ( S _D G ) --> CC <-> ( S _D G ) : X --> CC ) ) |
64 |
39 63
|
mpbid |
|- ( ph -> ( S _D G ) : X --> CC ) |
65 |
64
|
feqmptd |
|- ( ph -> ( S _D G ) = ( x e. X |-> ( ( S _D G ) ` x ) ) ) |
66 |
2
|
feqmptd |
|- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
67 |
24 30 62 65 66
|
offval2 |
|- ( ph -> ( ( S _D G ) oF x. F ) = ( x e. X |-> ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) |
68 |
24 54 55 61 67
|
offval2 |
|- ( ph -> ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) = ( x e. X |-> ( ( ( ( S _D F ) ` x ) x. ( G ` x ) ) + ( ( ( S _D G ) ` x ) x. ( F ` x ) ) ) ) ) |
69 |
17 53 68
|
3eqtr4d |
|- ( ph -> ( S _D ( F oF x. G ) ) = ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) ) |