Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( x e. _V |-> ( S _D x ) ) = ( x e. _V |-> ( S _D x ) ) |
2 |
1
|
dvnfval |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) |
3 |
2
|
fveq1d |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` 0 ) ) |
4 |
|
0z |
|- 0 e. ZZ |
5 |
|
simpr |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> F e. ( CC ^pm S ) ) |
6 |
|
0nn0 |
|- 0 e. NN0 |
7 |
|
fvconst2g |
|- ( ( F e. ( CC ^pm S ) /\ 0 e. NN0 ) -> ( ( NN0 X. { F } ) ` 0 ) = F ) |
8 |
5 6 7
|
sylancl |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( NN0 X. { F } ) ` 0 ) = F ) |
9 |
4 8
|
seq1i |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` 0 ) = F ) |
10 |
3 9
|
eqtrd |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |