Step |
Hyp |
Ref |
Expression |
1 |
|
dvnff |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) : NN0 --> ( CC ^pm dom F ) ) |
2 |
1
|
ffvelrnda |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ N e. NN0 ) -> ( ( S Dn F ) ` N ) e. ( CC ^pm dom F ) ) |
3 |
2
|
3impa |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` N ) e. ( CC ^pm dom F ) ) |
4 |
|
cnex |
|- CC e. _V |
5 |
|
simp2 |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> F e. ( CC ^pm S ) ) |
6 |
5
|
dmexd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> dom F e. _V ) |
7 |
|
elpm2g |
|- ( ( CC e. _V /\ dom F e. _V ) -> ( ( ( S Dn F ) ` N ) e. ( CC ^pm dom F ) <-> ( ( ( S Dn F ) ` N ) : dom ( ( S Dn F ) ` N ) --> CC /\ dom ( ( S Dn F ) ` N ) C_ dom F ) ) ) |
8 |
4 6 7
|
sylancr |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( ( S Dn F ) ` N ) e. ( CC ^pm dom F ) <-> ( ( ( S Dn F ) ` N ) : dom ( ( S Dn F ) ` N ) --> CC /\ dom ( ( S Dn F ) ` N ) C_ dom F ) ) ) |
9 |
3 8
|
mpbid |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( ( S Dn F ) ` N ) : dom ( ( S Dn F ) ` N ) --> CC /\ dom ( ( S Dn F ) ` N ) C_ dom F ) ) |
10 |
9
|
simprd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> dom ( ( S Dn F ) ` N ) C_ dom F ) |