Step |
Hyp |
Ref |
Expression |
1 |
|
dvne0.a |
|- ( ph -> A e. RR ) |
2 |
|
dvne0.b |
|- ( ph -> B e. RR ) |
3 |
|
dvne0.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
4 |
|
dvne0.d |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
5 |
|
dvne0.z |
|- ( ph -> -. 0 e. ran ( RR _D F ) ) |
6 |
|
eleq1 |
|- ( x = 0 -> ( x e. ran ( RR _D F ) <-> 0 e. ran ( RR _D F ) ) ) |
7 |
6
|
notbid |
|- ( x = 0 -> ( -. x e. ran ( RR _D F ) <-> -. 0 e. ran ( RR _D F ) ) ) |
8 |
5 7
|
syl5ibrcom |
|- ( ph -> ( x = 0 -> -. x e. ran ( RR _D F ) ) ) |
9 |
8
|
necon2ad |
|- ( ph -> ( x e. ran ( RR _D F ) -> x =/= 0 ) ) |
10 |
9
|
imp |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> x =/= 0 ) |
11 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
12 |
3 11
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
13 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
14 |
1 2 13
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
15 |
|
dvfre |
|- ( ( F : ( A [,] B ) --> RR /\ ( A [,] B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
16 |
12 14 15
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
17 |
16
|
frnd |
|- ( ph -> ran ( RR _D F ) C_ RR ) |
18 |
17
|
sselda |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> x e. RR ) |
19 |
|
0re |
|- 0 e. RR |
20 |
|
lttri2 |
|- ( ( x e. RR /\ 0 e. RR ) -> ( x =/= 0 <-> ( x < 0 \/ 0 < x ) ) ) |
21 |
18 19 20
|
sylancl |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( x =/= 0 <-> ( x < 0 \/ 0 < x ) ) ) |
22 |
|
0xr |
|- 0 e. RR* |
23 |
|
elioomnf |
|- ( 0 e. RR* -> ( x e. ( -oo (,) 0 ) <-> ( x e. RR /\ x < 0 ) ) ) |
24 |
22 23
|
ax-mp |
|- ( x e. ( -oo (,) 0 ) <-> ( x e. RR /\ x < 0 ) ) |
25 |
24
|
baib |
|- ( x e. RR -> ( x e. ( -oo (,) 0 ) <-> x < 0 ) ) |
26 |
|
elrp |
|- ( x e. RR+ <-> ( x e. RR /\ 0 < x ) ) |
27 |
26
|
baib |
|- ( x e. RR -> ( x e. RR+ <-> 0 < x ) ) |
28 |
25 27
|
orbi12d |
|- ( x e. RR -> ( ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) <-> ( x < 0 \/ 0 < x ) ) ) |
29 |
18 28
|
syl |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) <-> ( x < 0 \/ 0 < x ) ) ) |
30 |
21 29
|
bitr4d |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( x =/= 0 <-> ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) ) ) |
31 |
10 30
|
mpbid |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) ) |
32 |
|
elun |
|- ( x e. ( ( -oo (,) 0 ) u. RR+ ) <-> ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) ) |
33 |
31 32
|
sylibr |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> x e. ( ( -oo (,) 0 ) u. RR+ ) ) |
34 |
33
|
ex |
|- ( ph -> ( x e. ran ( RR _D F ) -> x e. ( ( -oo (,) 0 ) u. RR+ ) ) ) |
35 |
34
|
ssrdv |
|- ( ph -> ran ( RR _D F ) C_ ( ( -oo (,) 0 ) u. RR+ ) ) |
36 |
|
disjssun |
|- ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) -> ( ran ( RR _D F ) C_ ( ( -oo (,) 0 ) u. RR+ ) <-> ran ( RR _D F ) C_ RR+ ) ) |
37 |
35 36
|
syl5ibcom |
|- ( ph -> ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) -> ran ( RR _D F ) C_ RR+ ) ) |
38 |
37
|
imp |
|- ( ( ph /\ ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) ) -> ran ( RR _D F ) C_ RR+ ) |
39 |
1
|
adantr |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> A e. RR ) |
40 |
2
|
adantr |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> B e. RR ) |
41 |
3
|
adantr |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
42 |
4
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
43 |
16 42
|
mpbid |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
44 |
43
|
ffnd |
|- ( ph -> ( RR _D F ) Fn ( A (,) B ) ) |
45 |
44
|
anim1i |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> ( ( RR _D F ) Fn ( A (,) B ) /\ ran ( RR _D F ) C_ RR+ ) ) |
46 |
|
df-f |
|- ( ( RR _D F ) : ( A (,) B ) --> RR+ <-> ( ( RR _D F ) Fn ( A (,) B ) /\ ran ( RR _D F ) C_ RR+ ) ) |
47 |
45 46
|
sylibr |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> ( RR _D F ) : ( A (,) B ) --> RR+ ) |
48 |
39 40 41 47
|
dvgt0 |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> F Isom < , < ( ( A [,] B ) , ran F ) ) |
49 |
48
|
orcd |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
50 |
38 49
|
syldan |
|- ( ( ph /\ ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
51 |
|
n0 |
|- ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) =/= (/) <-> E. x x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) ) |
52 |
|
elin |
|- ( x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) <-> ( x e. ran ( RR _D F ) /\ x e. ( -oo (,) 0 ) ) ) |
53 |
|
fvelrnb |
|- ( ( RR _D F ) Fn ( A (,) B ) -> ( x e. ran ( RR _D F ) <-> E. y e. ( A (,) B ) ( ( RR _D F ) ` y ) = x ) ) |
54 |
44 53
|
syl |
|- ( ph -> ( x e. ran ( RR _D F ) <-> E. y e. ( A (,) B ) ( ( RR _D F ) ` y ) = x ) ) |
55 |
1
|
adantr |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> A e. RR ) |
56 |
2
|
adantr |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> B e. RR ) |
57 |
3
|
adantr |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
58 |
44
|
adantr |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( RR _D F ) Fn ( A (,) B ) ) |
59 |
43
|
adantr |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( RR _D F ) : ( A (,) B ) --> RR ) |
60 |
59
|
ffvelrnda |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. RR ) |
61 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> -. 0 e. ran ( RR _D F ) ) |
62 |
|
simplrl |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> y e. ( A (,) B ) ) |
63 |
|
simprl |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> z e. ( A (,) B ) ) |
64 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
65 |
|
rescncf |
|- ( ( A (,) B ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> RR ) ) ) |
66 |
64 3 65
|
mpsyl |
|- ( ph -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> RR ) ) |
67 |
66
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> RR ) ) |
68 |
|
ax-resscn |
|- RR C_ CC |
69 |
68
|
a1i |
|- ( ph -> RR C_ CC ) |
70 |
|
fss |
|- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
71 |
12 68 70
|
sylancl |
|- ( ph -> F : ( A [,] B ) --> CC ) |
72 |
64 14
|
sstrid |
|- ( ph -> ( A (,) B ) C_ RR ) |
73 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
74 |
73
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
75 |
73 74
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( A (,) B ) C_ RR ) ) -> ( RR _D ( F |` ( A (,) B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) ) |
76 |
69 71 14 72 75
|
syl22anc |
|- ( ph -> ( RR _D ( F |` ( A (,) B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) ) |
77 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
78 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
79 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A (,) B ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) ) |
80 |
77 78 79
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) |
81 |
80
|
reseq2i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) = ( ( RR _D F ) |` ( A (,) B ) ) |
82 |
|
fnresdm |
|- ( ( RR _D F ) Fn ( A (,) B ) -> ( ( RR _D F ) |` ( A (,) B ) ) = ( RR _D F ) ) |
83 |
44 82
|
syl |
|- ( ph -> ( ( RR _D F ) |` ( A (,) B ) ) = ( RR _D F ) ) |
84 |
81 83
|
eqtrid |
|- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) = ( RR _D F ) ) |
85 |
76 84
|
eqtrd |
|- ( ph -> ( RR _D ( F |` ( A (,) B ) ) ) = ( RR _D F ) ) |
86 |
85
|
dmeqd |
|- ( ph -> dom ( RR _D ( F |` ( A (,) B ) ) ) = dom ( RR _D F ) ) |
87 |
86 4
|
eqtrd |
|- ( ph -> dom ( RR _D ( F |` ( A (,) B ) ) ) = ( A (,) B ) ) |
88 |
87
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> dom ( RR _D ( F |` ( A (,) B ) ) ) = ( A (,) B ) ) |
89 |
62 63 67 88
|
dvivth |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D ( F |` ( A (,) B ) ) ) ` y ) [,] ( ( RR _D ( F |` ( A (,) B ) ) ) ` z ) ) C_ ran ( RR _D ( F |` ( A (,) B ) ) ) ) |
90 |
85
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( RR _D ( F |` ( A (,) B ) ) ) = ( RR _D F ) ) |
91 |
90
|
fveq1d |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D ( F |` ( A (,) B ) ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
92 |
90
|
fveq1d |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D ( F |` ( A (,) B ) ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
93 |
91 92
|
oveq12d |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D ( F |` ( A (,) B ) ) ) ` y ) [,] ( ( RR _D ( F |` ( A (,) B ) ) ) ` z ) ) = ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) ) |
94 |
90
|
rneqd |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ran ( RR _D ( F |` ( A (,) B ) ) ) = ran ( RR _D F ) ) |
95 |
89 93 94
|
3sstr3d |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) C_ ran ( RR _D F ) ) |
96 |
19
|
a1i |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 e. RR ) |
97 |
|
simplrr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) |
98 |
|
elioomnf |
|- ( 0 e. RR* -> ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` y ) < 0 ) ) ) |
99 |
22 98
|
ax-mp |
|- ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` y ) < 0 ) ) |
100 |
97 99
|
sylib |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` y ) < 0 ) ) |
101 |
100
|
simprd |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) < 0 ) |
102 |
100
|
simpld |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) e. RR ) |
103 |
|
ltle |
|- ( ( ( ( RR _D F ) ` y ) e. RR /\ 0 e. RR ) -> ( ( ( RR _D F ) ` y ) < 0 -> ( ( RR _D F ) ` y ) <_ 0 ) ) |
104 |
102 19 103
|
sylancl |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D F ) ` y ) < 0 -> ( ( RR _D F ) ` y ) <_ 0 ) ) |
105 |
101 104
|
mpd |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) <_ 0 ) |
106 |
|
simprr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 <_ ( ( RR _D F ) ` z ) ) |
107 |
63 60
|
syldan |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` z ) e. RR ) |
108 |
|
elicc2 |
|- ( ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` z ) e. RR ) -> ( 0 e. ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) <-> ( 0 e. RR /\ ( ( RR _D F ) ` y ) <_ 0 /\ 0 <_ ( ( RR _D F ) ` z ) ) ) ) |
109 |
102 107 108
|
syl2anc |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( 0 e. ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) <-> ( 0 e. RR /\ ( ( RR _D F ) ` y ) <_ 0 /\ 0 <_ ( ( RR _D F ) ` z ) ) ) ) |
110 |
96 105 106 109
|
mpbir3and |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 e. ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) ) |
111 |
95 110
|
sseldd |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 e. ran ( RR _D F ) ) |
112 |
111
|
expr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( 0 <_ ( ( RR _D F ) ` z ) -> 0 e. ran ( RR _D F ) ) ) |
113 |
61 112
|
mtod |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> -. 0 <_ ( ( RR _D F ) ` z ) ) |
114 |
|
ltnle |
|- ( ( ( ( RR _D F ) ` z ) e. RR /\ 0 e. RR ) -> ( ( ( RR _D F ) ` z ) < 0 <-> -. 0 <_ ( ( RR _D F ) ` z ) ) ) |
115 |
60 19 114
|
sylancl |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` z ) < 0 <-> -. 0 <_ ( ( RR _D F ) ` z ) ) ) |
116 |
113 115
|
mpbird |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) < 0 ) |
117 |
|
elioomnf |
|- ( 0 e. RR* -> ( ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` z ) e. RR /\ ( ( RR _D F ) ` z ) < 0 ) ) ) |
118 |
22 117
|
ax-mp |
|- ( ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` z ) e. RR /\ ( ( RR _D F ) ` z ) < 0 ) ) |
119 |
60 116 118
|
sylanbrc |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) ) |
120 |
119
|
ralrimiva |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> A. z e. ( A (,) B ) ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) ) |
121 |
|
ffnfv |
|- ( ( RR _D F ) : ( A (,) B ) --> ( -oo (,) 0 ) <-> ( ( RR _D F ) Fn ( A (,) B ) /\ A. z e. ( A (,) B ) ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) ) ) |
122 |
58 120 121
|
sylanbrc |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( RR _D F ) : ( A (,) B ) --> ( -oo (,) 0 ) ) |
123 |
55 56 57 122
|
dvlt0 |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> F Isom < , `' < ( ( A [,] B ) , ran F ) ) |
124 |
123
|
olcd |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
125 |
124
|
expr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
126 |
|
eleq1 |
|- ( ( ( RR _D F ) ` y ) = x -> ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) <-> x e. ( -oo (,) 0 ) ) ) |
127 |
126
|
imbi1d |
|- ( ( ( RR _D F ) ` y ) = x -> ( ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) <-> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
128 |
125 127
|
syl5ibcom |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` y ) = x -> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
129 |
128
|
rexlimdva |
|- ( ph -> ( E. y e. ( A (,) B ) ( ( RR _D F ) ` y ) = x -> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
130 |
54 129
|
sylbid |
|- ( ph -> ( x e. ran ( RR _D F ) -> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
131 |
130
|
impd |
|- ( ph -> ( ( x e. ran ( RR _D F ) /\ x e. ( -oo (,) 0 ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
132 |
52 131
|
syl5bi |
|- ( ph -> ( x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
133 |
132
|
exlimdv |
|- ( ph -> ( E. x x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
134 |
51 133
|
syl5bi |
|- ( ph -> ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) =/= (/) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
135 |
134
|
imp |
|- ( ( ph /\ ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) =/= (/) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
136 |
50 135
|
pm2.61dane |
|- ( ph -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |