| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvne0.a |
|- ( ph -> A e. RR ) |
| 2 |
|
dvne0.b |
|- ( ph -> B e. RR ) |
| 3 |
|
dvne0.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 4 |
|
dvne0.d |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
| 5 |
|
dvne0.z |
|- ( ph -> -. 0 e. ran ( RR _D F ) ) |
| 6 |
|
eleq1 |
|- ( x = 0 -> ( x e. ran ( RR _D F ) <-> 0 e. ran ( RR _D F ) ) ) |
| 7 |
6
|
notbid |
|- ( x = 0 -> ( -. x e. ran ( RR _D F ) <-> -. 0 e. ran ( RR _D F ) ) ) |
| 8 |
5 7
|
syl5ibrcom |
|- ( ph -> ( x = 0 -> -. x e. ran ( RR _D F ) ) ) |
| 9 |
8
|
necon2ad |
|- ( ph -> ( x e. ran ( RR _D F ) -> x =/= 0 ) ) |
| 10 |
9
|
imp |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> x =/= 0 ) |
| 11 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
| 12 |
3 11
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
| 13 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 14 |
1 2 13
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 15 |
|
dvfre |
|- ( ( F : ( A [,] B ) --> RR /\ ( A [,] B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 16 |
12 14 15
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 17 |
16
|
frnd |
|- ( ph -> ran ( RR _D F ) C_ RR ) |
| 18 |
17
|
sselda |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> x e. RR ) |
| 19 |
|
0re |
|- 0 e. RR |
| 20 |
|
lttri2 |
|- ( ( x e. RR /\ 0 e. RR ) -> ( x =/= 0 <-> ( x < 0 \/ 0 < x ) ) ) |
| 21 |
18 19 20
|
sylancl |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( x =/= 0 <-> ( x < 0 \/ 0 < x ) ) ) |
| 22 |
|
0xr |
|- 0 e. RR* |
| 23 |
|
elioomnf |
|- ( 0 e. RR* -> ( x e. ( -oo (,) 0 ) <-> ( x e. RR /\ x < 0 ) ) ) |
| 24 |
22 23
|
ax-mp |
|- ( x e. ( -oo (,) 0 ) <-> ( x e. RR /\ x < 0 ) ) |
| 25 |
24
|
baib |
|- ( x e. RR -> ( x e. ( -oo (,) 0 ) <-> x < 0 ) ) |
| 26 |
|
elrp |
|- ( x e. RR+ <-> ( x e. RR /\ 0 < x ) ) |
| 27 |
26
|
baib |
|- ( x e. RR -> ( x e. RR+ <-> 0 < x ) ) |
| 28 |
25 27
|
orbi12d |
|- ( x e. RR -> ( ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) <-> ( x < 0 \/ 0 < x ) ) ) |
| 29 |
18 28
|
syl |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) <-> ( x < 0 \/ 0 < x ) ) ) |
| 30 |
21 29
|
bitr4d |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( x =/= 0 <-> ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) ) ) |
| 31 |
10 30
|
mpbid |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) ) |
| 32 |
|
elun |
|- ( x e. ( ( -oo (,) 0 ) u. RR+ ) <-> ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) ) |
| 33 |
31 32
|
sylibr |
|- ( ( ph /\ x e. ran ( RR _D F ) ) -> x e. ( ( -oo (,) 0 ) u. RR+ ) ) |
| 34 |
33
|
ex |
|- ( ph -> ( x e. ran ( RR _D F ) -> x e. ( ( -oo (,) 0 ) u. RR+ ) ) ) |
| 35 |
34
|
ssrdv |
|- ( ph -> ran ( RR _D F ) C_ ( ( -oo (,) 0 ) u. RR+ ) ) |
| 36 |
|
disjssun |
|- ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) -> ( ran ( RR _D F ) C_ ( ( -oo (,) 0 ) u. RR+ ) <-> ran ( RR _D F ) C_ RR+ ) ) |
| 37 |
35 36
|
syl5ibcom |
|- ( ph -> ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) -> ran ( RR _D F ) C_ RR+ ) ) |
| 38 |
37
|
imp |
|- ( ( ph /\ ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) ) -> ran ( RR _D F ) C_ RR+ ) |
| 39 |
1
|
adantr |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> A e. RR ) |
| 40 |
2
|
adantr |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> B e. RR ) |
| 41 |
3
|
adantr |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 42 |
4
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
| 43 |
16 42
|
mpbid |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 44 |
43
|
ffnd |
|- ( ph -> ( RR _D F ) Fn ( A (,) B ) ) |
| 45 |
44
|
anim1i |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> ( ( RR _D F ) Fn ( A (,) B ) /\ ran ( RR _D F ) C_ RR+ ) ) |
| 46 |
|
df-f |
|- ( ( RR _D F ) : ( A (,) B ) --> RR+ <-> ( ( RR _D F ) Fn ( A (,) B ) /\ ran ( RR _D F ) C_ RR+ ) ) |
| 47 |
45 46
|
sylibr |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> ( RR _D F ) : ( A (,) B ) --> RR+ ) |
| 48 |
39 40 41 47
|
dvgt0 |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> F Isom < , < ( ( A [,] B ) , ran F ) ) |
| 49 |
48
|
orcd |
|- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
| 50 |
38 49
|
syldan |
|- ( ( ph /\ ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
| 51 |
|
n0 |
|- ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) =/= (/) <-> E. x x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) ) |
| 52 |
|
elin |
|- ( x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) <-> ( x e. ran ( RR _D F ) /\ x e. ( -oo (,) 0 ) ) ) |
| 53 |
|
fvelrnb |
|- ( ( RR _D F ) Fn ( A (,) B ) -> ( x e. ran ( RR _D F ) <-> E. y e. ( A (,) B ) ( ( RR _D F ) ` y ) = x ) ) |
| 54 |
44 53
|
syl |
|- ( ph -> ( x e. ran ( RR _D F ) <-> E. y e. ( A (,) B ) ( ( RR _D F ) ` y ) = x ) ) |
| 55 |
1
|
adantr |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> A e. RR ) |
| 56 |
2
|
adantr |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> B e. RR ) |
| 57 |
3
|
adantr |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 58 |
44
|
adantr |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( RR _D F ) Fn ( A (,) B ) ) |
| 59 |
43
|
adantr |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 60 |
59
|
ffvelcdmda |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. RR ) |
| 61 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> -. 0 e. ran ( RR _D F ) ) |
| 62 |
|
simplrl |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> y e. ( A (,) B ) ) |
| 63 |
|
simprl |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> z e. ( A (,) B ) ) |
| 64 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 65 |
|
rescncf |
|- ( ( A (,) B ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> RR ) ) ) |
| 66 |
64 3 65
|
mpsyl |
|- ( ph -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> RR ) ) |
| 67 |
66
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> RR ) ) |
| 68 |
|
ax-resscn |
|- RR C_ CC |
| 69 |
68
|
a1i |
|- ( ph -> RR C_ CC ) |
| 70 |
|
fss |
|- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
| 71 |
12 68 70
|
sylancl |
|- ( ph -> F : ( A [,] B ) --> CC ) |
| 72 |
64 14
|
sstrid |
|- ( ph -> ( A (,) B ) C_ RR ) |
| 73 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 74 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 75 |
73 74
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( A (,) B ) C_ RR ) ) -> ( RR _D ( F |` ( A (,) B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) ) |
| 76 |
69 71 14 72 75
|
syl22anc |
|- ( ph -> ( RR _D ( F |` ( A (,) B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) ) |
| 77 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 78 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
| 79 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A (,) B ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) ) |
| 80 |
77 78 79
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) |
| 81 |
80
|
reseq2i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) = ( ( RR _D F ) |` ( A (,) B ) ) |
| 82 |
|
fnresdm |
|- ( ( RR _D F ) Fn ( A (,) B ) -> ( ( RR _D F ) |` ( A (,) B ) ) = ( RR _D F ) ) |
| 83 |
44 82
|
syl |
|- ( ph -> ( ( RR _D F ) |` ( A (,) B ) ) = ( RR _D F ) ) |
| 84 |
81 83
|
eqtrid |
|- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) = ( RR _D F ) ) |
| 85 |
76 84
|
eqtrd |
|- ( ph -> ( RR _D ( F |` ( A (,) B ) ) ) = ( RR _D F ) ) |
| 86 |
85
|
dmeqd |
|- ( ph -> dom ( RR _D ( F |` ( A (,) B ) ) ) = dom ( RR _D F ) ) |
| 87 |
86 4
|
eqtrd |
|- ( ph -> dom ( RR _D ( F |` ( A (,) B ) ) ) = ( A (,) B ) ) |
| 88 |
87
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> dom ( RR _D ( F |` ( A (,) B ) ) ) = ( A (,) B ) ) |
| 89 |
62 63 67 88
|
dvivth |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D ( F |` ( A (,) B ) ) ) ` y ) [,] ( ( RR _D ( F |` ( A (,) B ) ) ) ` z ) ) C_ ran ( RR _D ( F |` ( A (,) B ) ) ) ) |
| 90 |
85
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( RR _D ( F |` ( A (,) B ) ) ) = ( RR _D F ) ) |
| 91 |
90
|
fveq1d |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D ( F |` ( A (,) B ) ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
| 92 |
90
|
fveq1d |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D ( F |` ( A (,) B ) ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
| 93 |
91 92
|
oveq12d |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D ( F |` ( A (,) B ) ) ) ` y ) [,] ( ( RR _D ( F |` ( A (,) B ) ) ) ` z ) ) = ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) ) |
| 94 |
90
|
rneqd |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ran ( RR _D ( F |` ( A (,) B ) ) ) = ran ( RR _D F ) ) |
| 95 |
89 93 94
|
3sstr3d |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) C_ ran ( RR _D F ) ) |
| 96 |
19
|
a1i |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 e. RR ) |
| 97 |
|
simplrr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) |
| 98 |
|
elioomnf |
|- ( 0 e. RR* -> ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` y ) < 0 ) ) ) |
| 99 |
22 98
|
ax-mp |
|- ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` y ) < 0 ) ) |
| 100 |
97 99
|
sylib |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` y ) < 0 ) ) |
| 101 |
100
|
simprd |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) < 0 ) |
| 102 |
100
|
simpld |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) e. RR ) |
| 103 |
|
ltle |
|- ( ( ( ( RR _D F ) ` y ) e. RR /\ 0 e. RR ) -> ( ( ( RR _D F ) ` y ) < 0 -> ( ( RR _D F ) ` y ) <_ 0 ) ) |
| 104 |
102 19 103
|
sylancl |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D F ) ` y ) < 0 -> ( ( RR _D F ) ` y ) <_ 0 ) ) |
| 105 |
101 104
|
mpd |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) <_ 0 ) |
| 106 |
|
simprr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 <_ ( ( RR _D F ) ` z ) ) |
| 107 |
63 60
|
syldan |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` z ) e. RR ) |
| 108 |
|
elicc2 |
|- ( ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` z ) e. RR ) -> ( 0 e. ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) <-> ( 0 e. RR /\ ( ( RR _D F ) ` y ) <_ 0 /\ 0 <_ ( ( RR _D F ) ` z ) ) ) ) |
| 109 |
102 107 108
|
syl2anc |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( 0 e. ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) <-> ( 0 e. RR /\ ( ( RR _D F ) ` y ) <_ 0 /\ 0 <_ ( ( RR _D F ) ` z ) ) ) ) |
| 110 |
96 105 106 109
|
mpbir3and |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 e. ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) ) |
| 111 |
95 110
|
sseldd |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 e. ran ( RR _D F ) ) |
| 112 |
111
|
expr |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( 0 <_ ( ( RR _D F ) ` z ) -> 0 e. ran ( RR _D F ) ) ) |
| 113 |
61 112
|
mtod |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> -. 0 <_ ( ( RR _D F ) ` z ) ) |
| 114 |
|
ltnle |
|- ( ( ( ( RR _D F ) ` z ) e. RR /\ 0 e. RR ) -> ( ( ( RR _D F ) ` z ) < 0 <-> -. 0 <_ ( ( RR _D F ) ` z ) ) ) |
| 115 |
60 19 114
|
sylancl |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` z ) < 0 <-> -. 0 <_ ( ( RR _D F ) ` z ) ) ) |
| 116 |
113 115
|
mpbird |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) < 0 ) |
| 117 |
|
elioomnf |
|- ( 0 e. RR* -> ( ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` z ) e. RR /\ ( ( RR _D F ) ` z ) < 0 ) ) ) |
| 118 |
22 117
|
ax-mp |
|- ( ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` z ) e. RR /\ ( ( RR _D F ) ` z ) < 0 ) ) |
| 119 |
60 116 118
|
sylanbrc |
|- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) ) |
| 120 |
119
|
ralrimiva |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> A. z e. ( A (,) B ) ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) ) |
| 121 |
|
ffnfv |
|- ( ( RR _D F ) : ( A (,) B ) --> ( -oo (,) 0 ) <-> ( ( RR _D F ) Fn ( A (,) B ) /\ A. z e. ( A (,) B ) ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) ) ) |
| 122 |
58 120 121
|
sylanbrc |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( RR _D F ) : ( A (,) B ) --> ( -oo (,) 0 ) ) |
| 123 |
55 56 57 122
|
dvlt0 |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> F Isom < , `' < ( ( A [,] B ) , ran F ) ) |
| 124 |
123
|
olcd |
|- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
| 125 |
124
|
expr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
| 126 |
|
eleq1 |
|- ( ( ( RR _D F ) ` y ) = x -> ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) <-> x e. ( -oo (,) 0 ) ) ) |
| 127 |
126
|
imbi1d |
|- ( ( ( RR _D F ) ` y ) = x -> ( ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) <-> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
| 128 |
125 127
|
syl5ibcom |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` y ) = x -> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
| 129 |
128
|
rexlimdva |
|- ( ph -> ( E. y e. ( A (,) B ) ( ( RR _D F ) ` y ) = x -> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
| 130 |
54 129
|
sylbid |
|- ( ph -> ( x e. ran ( RR _D F ) -> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
| 131 |
130
|
impd |
|- ( ph -> ( ( x e. ran ( RR _D F ) /\ x e. ( -oo (,) 0 ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
| 132 |
52 131
|
biimtrid |
|- ( ph -> ( x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
| 133 |
132
|
exlimdv |
|- ( ph -> ( E. x x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
| 134 |
51 133
|
biimtrid |
|- ( ph -> ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) =/= (/) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
| 135 |
134
|
imp |
|- ( ( ph /\ ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) =/= (/) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
| 136 |
50 135
|
pm2.61dane |
|- ( ph -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |