Step |
Hyp |
Ref |
Expression |
1 |
|
dvne0.a |
|- ( ph -> A e. RR ) |
2 |
|
dvne0.b |
|- ( ph -> B e. RR ) |
3 |
|
dvne0.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
4 |
|
dvne0.d |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
5 |
|
dvne0.z |
|- ( ph -> -. 0 e. ran ( RR _D F ) ) |
6 |
1 2 3 4 5
|
dvne0 |
|- ( ph -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
7 |
|
isof1o |
|- ( F Isom < , < ( ( A [,] B ) , ran F ) -> F : ( A [,] B ) -1-1-onto-> ran F ) |
8 |
|
isof1o |
|- ( F Isom < , `' < ( ( A [,] B ) , ran F ) -> F : ( A [,] B ) -1-1-onto-> ran F ) |
9 |
7 8
|
jaoi |
|- ( ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) -> F : ( A [,] B ) -1-1-onto-> ran F ) |
10 |
|
f1of1 |
|- ( F : ( A [,] B ) -1-1-onto-> ran F -> F : ( A [,] B ) -1-1-> ran F ) |
11 |
6 9 10
|
3syl |
|- ( ph -> F : ( A [,] B ) -1-1-> ran F ) |
12 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
13 |
|
frn |
|- ( F : ( A [,] B ) --> RR -> ran F C_ RR ) |
14 |
3 12 13
|
3syl |
|- ( ph -> ran F C_ RR ) |
15 |
|
f1ss |
|- ( ( F : ( A [,] B ) -1-1-> ran F /\ ran F C_ RR ) -> F : ( A [,] B ) -1-1-> RR ) |
16 |
11 14 15
|
syl2anc |
|- ( ph -> F : ( A [,] B ) -1-1-> RR ) |