| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 2 |  | 0zd |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> 0 e. ZZ ) | 
						
							| 3 |  | fvconst2g |  |-  ( ( F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( NN0 X. { F } ) ` k ) = F ) | 
						
							| 4 | 3 | adantll |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> ( ( NN0 X. { F } ) ` k ) = F ) | 
						
							| 5 |  | dmexg |  |-  ( F e. ( CC ^pm S ) -> dom F e. _V ) | 
						
							| 6 | 5 | ad2antlr |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> dom F e. _V ) | 
						
							| 7 |  | cnex |  |-  CC e. _V | 
						
							| 8 | 7 | a1i |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> CC e. _V ) | 
						
							| 9 |  | elpm2g |  |-  ( ( CC e. _V /\ S e. { RR , CC } ) -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) | 
						
							| 10 | 7 9 | mpan |  |-  ( S e. { RR , CC } -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) | 
						
							| 11 | 10 | biimpa |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( F : dom F --> CC /\ dom F C_ S ) ) | 
						
							| 12 | 11 | simpld |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> F : dom F --> CC ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> F : dom F --> CC ) | 
						
							| 14 |  | fpmg |  |-  ( ( dom F e. _V /\ CC e. _V /\ F : dom F --> CC ) -> F e. ( CC ^pm dom F ) ) | 
						
							| 15 | 6 8 13 14 | syl3anc |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> F e. ( CC ^pm dom F ) ) | 
						
							| 16 | 4 15 | eqeltrd |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> ( ( NN0 X. { F } ) ` k ) e. ( CC ^pm dom F ) ) | 
						
							| 17 |  | vex |  |-  k e. _V | 
						
							| 18 |  | vex |  |-  n e. _V | 
						
							| 19 | 17 18 | opco1i |  |-  ( k ( ( x e. _V |-> ( S _D x ) ) o. 1st ) n ) = ( ( x e. _V |-> ( S _D x ) ) ` k ) | 
						
							| 20 |  | oveq2 |  |-  ( x = k -> ( S _D x ) = ( S _D k ) ) | 
						
							| 21 |  | eqid |  |-  ( x e. _V |-> ( S _D x ) ) = ( x e. _V |-> ( S _D x ) ) | 
						
							| 22 |  | ovex |  |-  ( S _D k ) e. _V | 
						
							| 23 | 20 21 22 | fvmpt |  |-  ( k e. _V -> ( ( x e. _V |-> ( S _D x ) ) ` k ) = ( S _D k ) ) | 
						
							| 24 | 23 | elv |  |-  ( ( x e. _V |-> ( S _D x ) ) ` k ) = ( S _D k ) | 
						
							| 25 | 19 24 | eqtri |  |-  ( k ( ( x e. _V |-> ( S _D x ) ) o. 1st ) n ) = ( S _D k ) | 
						
							| 26 | 7 | a1i |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> CC e. _V ) | 
						
							| 27 | 5 | ad2antlr |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom F e. _V ) | 
						
							| 28 |  | dvfg |  |-  ( S e. { RR , CC } -> ( S _D k ) : dom ( S _D k ) --> CC ) | 
						
							| 29 | 28 | ad2antrr |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( S _D k ) : dom ( S _D k ) --> CC ) | 
						
							| 30 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> S C_ CC ) | 
						
							| 32 |  | simprl |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> k e. ( CC ^pm dom F ) ) | 
						
							| 33 |  | elpm2g |  |-  ( ( CC e. _V /\ dom F e. _V ) -> ( k e. ( CC ^pm dom F ) <-> ( k : dom k --> CC /\ dom k C_ dom F ) ) ) | 
						
							| 34 | 7 27 33 | sylancr |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( k e. ( CC ^pm dom F ) <-> ( k : dom k --> CC /\ dom k C_ dom F ) ) ) | 
						
							| 35 | 32 34 | mpbid |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( k : dom k --> CC /\ dom k C_ dom F ) ) | 
						
							| 36 | 35 | simpld |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> k : dom k --> CC ) | 
						
							| 37 | 35 | simprd |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom k C_ dom F ) | 
						
							| 38 | 11 | simprd |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> dom F C_ S ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom F C_ S ) | 
						
							| 40 | 37 39 | sstrd |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom k C_ S ) | 
						
							| 41 | 31 36 40 | dvbss |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom ( S _D k ) C_ dom k ) | 
						
							| 42 | 41 37 | sstrd |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom ( S _D k ) C_ dom F ) | 
						
							| 43 |  | elpm2r |  |-  ( ( ( CC e. _V /\ dom F e. _V ) /\ ( ( S _D k ) : dom ( S _D k ) --> CC /\ dom ( S _D k ) C_ dom F ) ) -> ( S _D k ) e. ( CC ^pm dom F ) ) | 
						
							| 44 | 26 27 29 42 43 | syl22anc |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( S _D k ) e. ( CC ^pm dom F ) ) | 
						
							| 45 | 25 44 | eqeltrid |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( k ( ( x e. _V |-> ( S _D x ) ) o. 1st ) n ) e. ( CC ^pm dom F ) ) | 
						
							| 46 | 1 2 16 45 | seqf |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) : NN0 --> ( CC ^pm dom F ) ) | 
						
							| 47 | 21 | dvnfval |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) | 
						
							| 48 | 30 47 | sylan |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) | 
						
							| 49 | 48 | feq1d |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) : NN0 --> ( CC ^pm dom F ) <-> seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) : NN0 --> ( CC ^pm dom F ) ) ) | 
						
							| 50 | 46 49 | mpbird |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) : NN0 --> ( CC ^pm dom F ) ) |