Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( x = 0 -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` 0 ) ) |
2 |
1
|
dmeqd |
|- ( x = 0 -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` 0 ) ) |
3 |
1 2
|
feq12d |
|- ( x = 0 -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR ) ) |
4 |
3
|
imbi2d |
|- ( x = 0 -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR ) ) ) |
5 |
|
fveq2 |
|- ( x = n -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` n ) ) |
6 |
5
|
dmeqd |
|- ( x = n -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` n ) ) |
7 |
5 6
|
feq12d |
|- ( x = n -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) |
8 |
7
|
imbi2d |
|- ( x = n -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) ) |
9 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` ( n + 1 ) ) ) |
10 |
9
|
dmeqd |
|- ( x = ( n + 1 ) -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` ( n + 1 ) ) ) |
11 |
9 10
|
feq12d |
|- ( x = ( n + 1 ) -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) |
12 |
11
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) ) |
13 |
|
fveq2 |
|- ( x = N -> ( ( RR Dn F ) ` x ) = ( ( RR Dn F ) ` N ) ) |
14 |
13
|
dmeqd |
|- ( x = N -> dom ( ( RR Dn F ) ` x ) = dom ( ( RR Dn F ) ` N ) ) |
15 |
13 14
|
feq12d |
|- ( x = N -> ( ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR <-> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) |
16 |
15
|
imbi2d |
|- ( x = N -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` x ) : dom ( ( RR Dn F ) ` x ) --> RR ) <-> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) ) |
17 |
|
simpl |
|- ( ( F : A --> RR /\ A C_ RR ) -> F : A --> RR ) |
18 |
|
ax-resscn |
|- RR C_ CC |
19 |
|
fss |
|- ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) |
20 |
18 19
|
mpan2 |
|- ( F : A --> RR -> F : A --> CC ) |
21 |
|
cnex |
|- CC e. _V |
22 |
|
reex |
|- RR e. _V |
23 |
|
elpm2r |
|- ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : A --> CC /\ A C_ RR ) ) -> F e. ( CC ^pm RR ) ) |
24 |
21 22 23
|
mpanl12 |
|- ( ( F : A --> CC /\ A C_ RR ) -> F e. ( CC ^pm RR ) ) |
25 |
20 24
|
sylan |
|- ( ( F : A --> RR /\ A C_ RR ) -> F e. ( CC ^pm RR ) ) |
26 |
|
dvn0 |
|- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) ) -> ( ( RR Dn F ) ` 0 ) = F ) |
27 |
18 25 26
|
sylancr |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` 0 ) = F ) |
28 |
27
|
dmeqd |
|- ( ( F : A --> RR /\ A C_ RR ) -> dom ( ( RR Dn F ) ` 0 ) = dom F ) |
29 |
|
fdm |
|- ( F : A --> RR -> dom F = A ) |
30 |
29
|
adantr |
|- ( ( F : A --> RR /\ A C_ RR ) -> dom F = A ) |
31 |
28 30
|
eqtrd |
|- ( ( F : A --> RR /\ A C_ RR ) -> dom ( ( RR Dn F ) ` 0 ) = A ) |
32 |
27 31
|
feq12d |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR <-> F : A --> RR ) ) |
33 |
17 32
|
mpbird |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` 0 ) : dom ( ( RR Dn F ) ` 0 ) --> RR ) |
34 |
|
simprr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) |
35 |
22
|
prid1 |
|- RR e. { RR , CC } |
36 |
|
simprl |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> n e. NN0 ) |
37 |
|
dvnbss |
|- ( ( RR e. { RR , CC } /\ F e. ( CC ^pm RR ) /\ n e. NN0 ) -> dom ( ( RR Dn F ) ` n ) C_ dom F ) |
38 |
35 25 36 37
|
mp3an2ani |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` n ) C_ dom F ) |
39 |
30
|
adantr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom F = A ) |
40 |
38 39
|
sseqtrd |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` n ) C_ A ) |
41 |
|
simplr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> A C_ RR ) |
42 |
40 41
|
sstrd |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` n ) C_ RR ) |
43 |
|
dvfre |
|- ( ( ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR /\ dom ( ( RR Dn F ) ` n ) C_ RR ) -> ( RR _D ( ( RR Dn F ) ` n ) ) : dom ( RR _D ( ( RR Dn F ) ` n ) ) --> RR ) |
44 |
34 42 43
|
syl2anc |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( RR _D ( ( RR Dn F ) ` n ) ) : dom ( RR _D ( ( RR Dn F ) ` n ) ) --> RR ) |
45 |
|
dvnp1 |
|- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ n e. NN0 ) -> ( ( RR Dn F ) ` ( n + 1 ) ) = ( RR _D ( ( RR Dn F ) ` n ) ) ) |
46 |
18 25 36 45
|
mp3an2ani |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( RR Dn F ) ` ( n + 1 ) ) = ( RR _D ( ( RR Dn F ) ` n ) ) ) |
47 |
46
|
dmeqd |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> dom ( ( RR Dn F ) ` ( n + 1 ) ) = dom ( RR _D ( ( RR Dn F ) ` n ) ) ) |
48 |
46 47
|
feq12d |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR <-> ( RR _D ( ( RR Dn F ) ` n ) ) : dom ( RR _D ( ( RR Dn F ) ` n ) ) --> RR ) ) |
49 |
44 48
|
mpbird |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ ( n e. NN0 /\ ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) ) -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) |
50 |
49
|
expr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ n e. NN0 ) -> ( ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) |
51 |
50
|
expcom |
|- ( n e. NN0 -> ( ( F : A --> RR /\ A C_ RR ) -> ( ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) ) |
52 |
51
|
a2d |
|- ( n e. NN0 -> ( ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` n ) : dom ( ( RR Dn F ) ` n ) --> RR ) -> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` ( n + 1 ) ) : dom ( ( RR Dn F ) ` ( n + 1 ) ) --> RR ) ) ) |
53 |
4 8 12 16 33 52
|
nn0ind |
|- ( N e. NN0 -> ( ( F : A --> RR /\ A C_ RR ) -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) |
54 |
53
|
com12 |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( N e. NN0 -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) ) |
55 |
54
|
3impia |
|- ( ( F : A --> RR /\ A C_ RR /\ N e. NN0 ) -> ( ( RR Dn F ) ` N ) : dom ( ( RR Dn F ) ` N ) --> RR ) |