| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvnfval.1 |  |-  G = ( x e. _V |-> ( S _D x ) ) | 
						
							| 2 |  | df-dvn |  |-  Dn = ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) ) | 
						
							| 3 | 2 | a1i |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> Dn = ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) ) ) | 
						
							| 4 |  | simprl |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> s = S ) | 
						
							| 5 | 4 | oveq1d |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( s _D x ) = ( S _D x ) ) | 
						
							| 6 | 5 | mpteq2dv |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( x e. _V |-> ( s _D x ) ) = ( x e. _V |-> ( S _D x ) ) ) | 
						
							| 7 | 6 1 | eqtr4di |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( x e. _V |-> ( s _D x ) ) = G ) | 
						
							| 8 | 7 | coeq1d |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( ( x e. _V |-> ( s _D x ) ) o. 1st ) = ( G o. 1st ) ) | 
						
							| 9 | 8 | seqeq2d |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { f } ) ) ) | 
						
							| 10 |  | simprr |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> f = F ) | 
						
							| 11 | 10 | sneqd |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> { f } = { F } ) | 
						
							| 12 | 11 | xpeq2d |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( NN0 X. { f } ) = ( NN0 X. { F } ) ) | 
						
							| 13 | 12 | seqeq3d |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> seq 0 ( ( G o. 1st ) , ( NN0 X. { f } ) ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) ) | 
						
							| 14 | 9 13 | eqtrd |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) ) | 
						
							| 15 |  | simpr |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ s = S ) -> s = S ) | 
						
							| 16 | 15 | oveq2d |  |-  ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ s = S ) -> ( CC ^pm s ) = ( CC ^pm S ) ) | 
						
							| 17 |  | simpl |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> S C_ CC ) | 
						
							| 18 |  | cnex |  |-  CC e. _V | 
						
							| 19 | 18 | elpw2 |  |-  ( S e. ~P CC <-> S C_ CC ) | 
						
							| 20 | 17 19 | sylibr |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> S e. ~P CC ) | 
						
							| 21 |  | simpr |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 22 |  | seqex |  |-  seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) e. _V | 
						
							| 23 | 22 | a1i |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) e. _V ) | 
						
							| 24 | 3 14 16 20 21 23 | ovmpodx |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) ) |