Step |
Hyp |
Ref |
Expression |
1 |
|
dvnfval.1 |
|- G = ( x e. _V |-> ( S _D x ) ) |
2 |
|
df-dvn |
|- Dn = ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) ) |
3 |
2
|
a1i |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> Dn = ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) ) ) |
4 |
|
simprl |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> s = S ) |
5 |
4
|
oveq1d |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( s _D x ) = ( S _D x ) ) |
6 |
5
|
mpteq2dv |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( x e. _V |-> ( s _D x ) ) = ( x e. _V |-> ( S _D x ) ) ) |
7 |
6 1
|
eqtr4di |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( x e. _V |-> ( s _D x ) ) = G ) |
8 |
7
|
coeq1d |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( ( x e. _V |-> ( s _D x ) ) o. 1st ) = ( G o. 1st ) ) |
9 |
8
|
seqeq2d |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { f } ) ) ) |
10 |
|
simprr |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> f = F ) |
11 |
10
|
sneqd |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> { f } = { F } ) |
12 |
11
|
xpeq2d |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> ( NN0 X. { f } ) = ( NN0 X. { F } ) ) |
13 |
12
|
seqeq3d |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> seq 0 ( ( G o. 1st ) , ( NN0 X. { f } ) ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) ) |
14 |
9 13
|
eqtrd |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ ( s = S /\ f = F ) ) -> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) ) |
15 |
|
simpr |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ s = S ) -> s = S ) |
16 |
15
|
oveq2d |
|- ( ( ( S C_ CC /\ F e. ( CC ^pm S ) ) /\ s = S ) -> ( CC ^pm s ) = ( CC ^pm S ) ) |
17 |
|
simpl |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> S C_ CC ) |
18 |
|
cnex |
|- CC e. _V |
19 |
18
|
elpw2 |
|- ( S e. ~P CC <-> S C_ CC ) |
20 |
17 19
|
sylibr |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> S e. ~P CC ) |
21 |
|
simpr |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> F e. ( CC ^pm S ) ) |
22 |
|
seqex |
|- seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) e. _V |
23 |
22
|
a1i |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) e. _V ) |
24 |
3 14 16 20 21 23
|
ovmpodx |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( G o. 1st ) , ( NN0 X. { F } ) ) ) |