| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvnmptconst.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | dvnmptconst.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | dvnmptconst.a |  |-  ( ph -> A e. CC ) | 
						
							| 4 |  | dvnmptconst.n |  |-  ( ph -> N e. NN ) | 
						
							| 5 |  | id |  |-  ( ph -> ph ) | 
						
							| 6 |  | fveq2 |  |-  ( n = 1 -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` 1 ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( n = 1 -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) <-> ( ( S Dn ( x e. X |-> A ) ) ` 1 ) = ( x e. X |-> 0 ) ) ) | 
						
							| 8 | 7 | imbi2d |  |-  ( n = 1 -> ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 1 ) = ( x e. X |-> 0 ) ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( n = m -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` m ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( n = m -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) <-> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) ) | 
						
							| 11 | 10 | imbi2d |  |-  ( n = m -> ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( n = ( m + 1 ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) ) | 
						
							| 13 | 12 | eqeq1d |  |-  ( n = ( m + 1 ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) <-> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( x e. X |-> 0 ) ) ) | 
						
							| 14 | 13 | imbi2d |  |-  ( n = ( m + 1 ) -> ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( x e. X |-> 0 ) ) ) ) | 
						
							| 15 |  | fveq2 |  |-  ( n = N -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` N ) ) | 
						
							| 16 | 15 | eqeq1d |  |-  ( n = N -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) <-> ( ( S Dn ( x e. X |-> A ) ) ` N ) = ( x e. X |-> 0 ) ) ) | 
						
							| 17 | 16 | imbi2d |  |-  ( n = N -> ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> 0 ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` N ) = ( x e. X |-> 0 ) ) ) ) | 
						
							| 18 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 19 | 1 18 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 20 | 3 | adantr |  |-  ( ( ph /\ x e. X ) -> A e. CC ) | 
						
							| 21 |  | restsspw |  |-  ( ( TopOpen ` CCfld ) |`t S ) C_ ~P S | 
						
							| 22 | 21 2 | sselid |  |-  ( ph -> X e. ~P S ) | 
						
							| 23 |  | elpwi |  |-  ( X e. ~P S -> X C_ S ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> X C_ S ) | 
						
							| 25 |  | cnex |  |-  CC e. _V | 
						
							| 26 | 25 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 27 | 20 24 26 1 | mptelpm |  |-  ( ph -> ( x e. X |-> A ) e. ( CC ^pm S ) ) | 
						
							| 28 |  | dvn1 |  |-  ( ( S C_ CC /\ ( x e. X |-> A ) e. ( CC ^pm S ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 1 ) = ( S _D ( x e. X |-> A ) ) ) | 
						
							| 29 | 19 27 28 | syl2anc |  |-  ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 1 ) = ( S _D ( x e. X |-> A ) ) ) | 
						
							| 30 | 1 2 3 | dvmptconst |  |-  ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> 0 ) ) | 
						
							| 31 | 29 30 | eqtrd |  |-  ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 1 ) = ( x e. X |-> 0 ) ) | 
						
							| 32 |  | simp3 |  |-  ( ( m e. NN /\ ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ph ) | 
						
							| 33 |  | simp1 |  |-  ( ( m e. NN /\ ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> m e. NN ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ph ) | 
						
							| 35 |  | simpl |  |-  ( ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) ) | 
						
							| 36 |  | pm3.35 |  |-  ( ( ph /\ ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) | 
						
							| 37 | 34 35 36 | syl2anc |  |-  ( ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) | 
						
							| 38 | 37 | 3adant1 |  |-  ( ( m e. NN /\ ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) | 
						
							| 39 | 19 | 3ad2ant1 |  |-  ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> S C_ CC ) | 
						
							| 40 | 27 | 3ad2ant1 |  |-  ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( x e. X |-> A ) e. ( CC ^pm S ) ) | 
						
							| 41 |  | nnnn0 |  |-  ( m e. NN -> m e. NN0 ) | 
						
							| 42 | 41 | 3ad2ant2 |  |-  ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> m e. NN0 ) | 
						
							| 43 |  | dvnp1 |  |-  ( ( S C_ CC /\ ( x e. X |-> A ) e. ( CC ^pm S ) /\ m e. NN0 ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` m ) ) ) | 
						
							| 44 | 39 40 42 43 | syl3anc |  |-  ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` m ) ) ) | 
						
							| 45 |  | oveq2 |  |-  ( ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) -> ( S _D ( ( S Dn ( x e. X |-> A ) ) ` m ) ) = ( S _D ( x e. X |-> 0 ) ) ) | 
						
							| 46 | 45 | 3ad2ant3 |  |-  ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( S _D ( ( S Dn ( x e. X |-> A ) ) ` m ) ) = ( S _D ( x e. X |-> 0 ) ) ) | 
						
							| 47 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 48 | 1 2 47 | dvmptconst |  |-  ( ph -> ( S _D ( x e. X |-> 0 ) ) = ( x e. X |-> 0 ) ) | 
						
							| 49 | 48 | 3ad2ant1 |  |-  ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( S _D ( x e. X |-> 0 ) ) = ( x e. X |-> 0 ) ) | 
						
							| 50 | 44 46 49 | 3eqtrd |  |-  ( ( ph /\ m e. NN /\ ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( x e. X |-> 0 ) ) | 
						
							| 51 | 32 33 38 50 | syl3anc |  |-  ( ( m e. NN /\ ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( x e. X |-> 0 ) ) | 
						
							| 52 | 51 | 3exp |  |-  ( m e. NN -> ( ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` m ) = ( x e. X |-> 0 ) ) -> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` ( m + 1 ) ) = ( x e. X |-> 0 ) ) ) ) | 
						
							| 53 | 8 11 14 17 31 52 | nnind |  |-  ( N e. NN -> ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` N ) = ( x e. X |-> 0 ) ) ) | 
						
							| 54 | 4 5 53 | sylc |  |-  ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` N ) = ( x e. X |-> 0 ) ) |