| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvnmptdivc.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | dvnmptdivc.x |  |-  ( ph -> X C_ S ) | 
						
							| 3 |  | dvnmptdivc.a |  |-  ( ( ph /\ x e. X ) -> A e. CC ) | 
						
							| 4 |  | dvnmptdivc.b |  |-  ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) | 
						
							| 5 |  | dvnmptdivc.dvn |  |-  ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) | 
						
							| 6 |  | dvnmptdivc.c |  |-  ( ph -> C e. CC ) | 
						
							| 7 |  | dvnmptdivc.cne0 |  |-  ( ph -> C =/= 0 ) | 
						
							| 8 |  | dvnmptdivc.8 |  |-  ( ph -> M e. NN0 ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ n e. ( 0 ... M ) ) -> n e. ( 0 ... M ) ) | 
						
							| 10 |  | simpl |  |-  ( ( ph /\ n e. ( 0 ... M ) ) -> ph ) | 
						
							| 11 |  | fveq2 |  |-  ( k = 0 -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) ) | 
						
							| 12 |  | csbeq1 |  |-  ( k = 0 -> [_ k / n ]_ B = [_ 0 / n ]_ B ) | 
						
							| 13 | 12 | oveq1d |  |-  ( k = 0 -> ( [_ k / n ]_ B / C ) = ( [_ 0 / n ]_ B / C ) ) | 
						
							| 14 | 13 | mpteq2dv |  |-  ( k = 0 -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) | 
						
							| 15 | 11 14 | eqeq12d |  |-  ( k = 0 -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( k = 0 -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) ) ) | 
						
							| 17 |  | fveq2 |  |-  ( k = j -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) | 
						
							| 18 |  | csbeq1 |  |-  ( k = j -> [_ k / n ]_ B = [_ j / n ]_ B ) | 
						
							| 19 | 18 | oveq1d |  |-  ( k = j -> ( [_ k / n ]_ B / C ) = ( [_ j / n ]_ B / C ) ) | 
						
							| 20 | 19 | mpteq2dv |  |-  ( k = j -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) | 
						
							| 21 | 17 20 | eqeq12d |  |-  ( k = j -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) | 
						
							| 22 | 21 | imbi2d |  |-  ( k = j -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) ) | 
						
							| 23 |  | fveq2 |  |-  ( k = ( j + 1 ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) ) | 
						
							| 24 |  | csbeq1 |  |-  ( k = ( j + 1 ) -> [_ k / n ]_ B = [_ ( j + 1 ) / n ]_ B ) | 
						
							| 25 | 24 | oveq1d |  |-  ( k = ( j + 1 ) -> ( [_ k / n ]_ B / C ) = ( [_ ( j + 1 ) / n ]_ B / C ) ) | 
						
							| 26 | 25 | mpteq2dv |  |-  ( k = ( j + 1 ) -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) | 
						
							| 27 | 23 26 | eqeq12d |  |-  ( k = ( j + 1 ) -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) ) | 
						
							| 28 | 27 | imbi2d |  |-  ( k = ( j + 1 ) -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) ) ) | 
						
							| 29 |  | fveq2 |  |-  ( k = n -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) ) | 
						
							| 30 |  | csbeq1a |  |-  ( n = k -> B = [_ k / n ]_ B ) | 
						
							| 31 | 30 | equcoms |  |-  ( k = n -> B = [_ k / n ]_ B ) | 
						
							| 32 | 31 | eqcomd |  |-  ( k = n -> [_ k / n ]_ B = B ) | 
						
							| 33 | 32 | oveq1d |  |-  ( k = n -> ( [_ k / n ]_ B / C ) = ( B / C ) ) | 
						
							| 34 | 33 | mpteq2dv |  |-  ( k = n -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( B / C ) ) ) | 
						
							| 35 | 29 34 | eqeq12d |  |-  ( k = n -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) ) | 
						
							| 36 | 35 | imbi2d |  |-  ( k = n -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) ) ) | 
						
							| 37 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 38 | 1 37 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 39 |  | cnex |  |-  CC e. _V | 
						
							| 40 | 39 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 41 | 6 | adantr |  |-  ( ( ph /\ x e. X ) -> C e. CC ) | 
						
							| 42 | 7 | adantr |  |-  ( ( ph /\ x e. X ) -> C =/= 0 ) | 
						
							| 43 | 3 41 42 | divcld |  |-  ( ( ph /\ x e. X ) -> ( A / C ) e. CC ) | 
						
							| 44 | 43 | fmpttd |  |-  ( ph -> ( x e. X |-> ( A / C ) ) : X --> CC ) | 
						
							| 45 |  | elpm2r |  |-  ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( ( x e. X |-> ( A / C ) ) : X --> CC /\ X C_ S ) ) -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) | 
						
							| 46 | 40 1 44 2 45 | syl22anc |  |-  ( ph -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) | 
						
							| 47 |  | dvn0 |  |-  ( ( S C_ CC /\ ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( A / C ) ) ) | 
						
							| 48 | 38 46 47 | syl2anc |  |-  ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( A / C ) ) ) | 
						
							| 49 |  | id |  |-  ( ph -> ph ) | 
						
							| 50 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 51 | 8 50 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 52 |  | eluzfz1 |  |-  ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) | 
						
							| 53 | 51 52 | syl |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 54 |  | nfv |  |-  F/ n ( ph /\ 0 e. ( 0 ... M ) ) | 
						
							| 55 |  | nfcv |  |-  F/_ n ( ( S Dn ( x e. X |-> A ) ) ` 0 ) | 
						
							| 56 |  | nfcv |  |-  F/_ n X | 
						
							| 57 |  | nfcsb1v |  |-  F/_ n [_ 0 / n ]_ B | 
						
							| 58 | 56 57 | nfmpt |  |-  F/_ n ( x e. X |-> [_ 0 / n ]_ B ) | 
						
							| 59 | 55 58 | nfeq |  |-  F/ n ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) | 
						
							| 60 | 54 59 | nfim |  |-  F/ n ( ( ph /\ 0 e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) | 
						
							| 61 |  | c0ex |  |-  0 e. _V | 
						
							| 62 |  | eleq1 |  |-  ( n = 0 -> ( n e. ( 0 ... M ) <-> 0 e. ( 0 ... M ) ) ) | 
						
							| 63 | 62 | anbi2d |  |-  ( n = 0 -> ( ( ph /\ n e. ( 0 ... M ) ) <-> ( ph /\ 0 e. ( 0 ... M ) ) ) ) | 
						
							| 64 |  | fveq2 |  |-  ( n = 0 -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ) | 
						
							| 65 |  | csbeq1a |  |-  ( n = 0 -> B = [_ 0 / n ]_ B ) | 
						
							| 66 | 65 | mpteq2dv |  |-  ( n = 0 -> ( x e. X |-> B ) = ( x e. X |-> [_ 0 / n ]_ B ) ) | 
						
							| 67 | 64 66 | eqeq12d |  |-  ( n = 0 -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) <-> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) ) | 
						
							| 68 | 63 67 | imbi12d |  |-  ( n = 0 -> ( ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) <-> ( ( ph /\ 0 e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) ) ) | 
						
							| 69 | 60 61 68 5 | vtoclf |  |-  ( ( ph /\ 0 e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) | 
						
							| 70 | 49 53 69 | syl2anc |  |-  ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) | 
						
							| 71 | 70 | fveq1d |  |-  ( ph -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ph /\ x e. X ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) ) | 
						
							| 73 |  | simpr |  |-  ( ( ph /\ x e. X ) -> x e. X ) | 
						
							| 74 |  | simpl |  |-  ( ( ph /\ x e. X ) -> ph ) | 
						
							| 75 | 53 | adantr |  |-  ( ( ph /\ x e. X ) -> 0 e. ( 0 ... M ) ) | 
						
							| 76 |  | 0re |  |-  0 e. RR | 
						
							| 77 |  | nfcv |  |-  F/_ n 0 | 
						
							| 78 |  | nfv |  |-  F/ n ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) | 
						
							| 79 |  | nfcv |  |-  F/_ n CC | 
						
							| 80 | 57 79 | nfel |  |-  F/ n [_ 0 / n ]_ B e. CC | 
						
							| 81 | 78 80 | nfim |  |-  F/ n ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) | 
						
							| 82 | 62 | 3anbi3d |  |-  ( n = 0 -> ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) <-> ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) ) ) | 
						
							| 83 | 65 | eleq1d |  |-  ( n = 0 -> ( B e. CC <-> [_ 0 / n ]_ B e. CC ) ) | 
						
							| 84 | 82 83 | imbi12d |  |-  ( n = 0 -> ( ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) <-> ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) ) ) | 
						
							| 85 | 77 81 84 4 | vtoclgf |  |-  ( 0 e. RR -> ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) ) | 
						
							| 86 | 76 85 | ax-mp |  |-  ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) | 
						
							| 87 | 74 73 75 86 | syl3anc |  |-  ( ( ph /\ x e. X ) -> [_ 0 / n ]_ B e. CC ) | 
						
							| 88 |  | eqid |  |-  ( x e. X |-> [_ 0 / n ]_ B ) = ( x e. X |-> [_ 0 / n ]_ B ) | 
						
							| 89 | 88 | fvmpt2 |  |-  ( ( x e. X /\ [_ 0 / n ]_ B e. CC ) -> ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) = [_ 0 / n ]_ B ) | 
						
							| 90 | 73 87 89 | syl2anc |  |-  ( ( ph /\ x e. X ) -> ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) = [_ 0 / n ]_ B ) | 
						
							| 91 | 72 90 | eqtr2d |  |-  ( ( ph /\ x e. X ) -> [_ 0 / n ]_ B = ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) ) | 
						
							| 92 | 3 | fmpttd |  |-  ( ph -> ( x e. X |-> A ) : X --> CC ) | 
						
							| 93 |  | elpm2r |  |-  ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( ( x e. X |-> A ) : X --> CC /\ X C_ S ) ) -> ( x e. X |-> A ) e. ( CC ^pm S ) ) | 
						
							| 94 | 40 1 92 2 93 | syl22anc |  |-  ( ph -> ( x e. X |-> A ) e. ( CC ^pm S ) ) | 
						
							| 95 |  | dvn0 |  |-  ( ( S C_ CC /\ ( x e. X |-> A ) e. ( CC ^pm S ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> A ) ) | 
						
							| 96 | 38 94 95 | syl2anc |  |-  ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> A ) ) | 
						
							| 97 | 96 | fveq1d |  |-  ( ph -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> A ) ` x ) ) | 
						
							| 98 | 97 | adantr |  |-  ( ( ph /\ x e. X ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> A ) ` x ) ) | 
						
							| 99 |  | eqid |  |-  ( x e. X |-> A ) = ( x e. X |-> A ) | 
						
							| 100 | 99 | fvmpt2 |  |-  ( ( x e. X /\ A e. CC ) -> ( ( x e. X |-> A ) ` x ) = A ) | 
						
							| 101 | 73 3 100 | syl2anc |  |-  ( ( ph /\ x e. X ) -> ( ( x e. X |-> A ) ` x ) = A ) | 
						
							| 102 | 91 98 101 | 3eqtrrd |  |-  ( ( ph /\ x e. X ) -> A = [_ 0 / n ]_ B ) | 
						
							| 103 | 102 | oveq1d |  |-  ( ( ph /\ x e. X ) -> ( A / C ) = ( [_ 0 / n ]_ B / C ) ) | 
						
							| 104 | 103 | mpteq2dva |  |-  ( ph -> ( x e. X |-> ( A / C ) ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) | 
						
							| 105 | 48 104 | eqtrd |  |-  ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) | 
						
							| 106 | 105 | a1i |  |-  ( M e. ( ZZ>= ` 0 ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) ) | 
						
							| 107 |  | simp3 |  |-  ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ph ) | 
						
							| 108 |  | simp1 |  |-  ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> j e. ( 0 ..^ M ) ) | 
						
							| 109 |  | simpr |  |-  ( ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ph ) | 
						
							| 110 |  | simpl |  |-  ( ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) | 
						
							| 111 | 109 110 | mpd |  |-  ( ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) | 
						
							| 112 | 111 | 3adant1 |  |-  ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) | 
						
							| 113 | 38 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> S C_ CC ) | 
						
							| 114 | 46 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) | 
						
							| 115 |  | elfzofz |  |-  ( j e. ( 0 ..^ M ) -> j e. ( 0 ... M ) ) | 
						
							| 116 |  | elfznn0 |  |-  ( j e. ( 0 ... M ) -> j e. NN0 ) | 
						
							| 117 | 116 | ad2antlr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> j e. NN0 ) | 
						
							| 118 | 115 117 | sylanl2 |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> j e. NN0 ) | 
						
							| 119 |  | dvnp1 |  |-  ( ( S C_ CC /\ ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) /\ j e. NN0 ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) | 
						
							| 120 | 113 114 118 119 | syl3anc |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) | 
						
							| 121 |  | oveq2 |  |-  ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) -> ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) = ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) | 
						
							| 122 | 121 | adantl |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) = ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) | 
						
							| 123 | 38 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> S C_ CC ) | 
						
							| 124 | 46 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) | 
						
							| 125 |  | simpr |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) | 
						
							| 126 | 125 116 | syl |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) | 
						
							| 127 | 115 126 | sylan2 |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> j e. NN0 ) | 
						
							| 128 | 123 124 127 119 | syl3anc |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) | 
						
							| 130 | 1 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> S e. { RR , CC } ) | 
						
							| 131 |  | simplr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> j e. ( 0 ... M ) ) | 
						
							| 132 | 49 | ad2antrr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ph ) | 
						
							| 133 |  | simpr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> x e. X ) | 
						
							| 134 | 132 133 131 | 3jca |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ( ph /\ x e. X /\ j e. ( 0 ... M ) ) ) | 
						
							| 135 |  | nfcv |  |-  F/_ n j | 
						
							| 136 |  | nfv |  |-  F/ n ( ph /\ x e. X /\ j e. ( 0 ... M ) ) | 
						
							| 137 | 135 | nfcsb1 |  |-  F/_ n [_ j / n ]_ B | 
						
							| 138 | 137 79 | nfel |  |-  F/ n [_ j / n ]_ B e. CC | 
						
							| 139 | 136 138 | nfim |  |-  F/ n ( ( ph /\ x e. X /\ j e. ( 0 ... M ) ) -> [_ j / n ]_ B e. CC ) | 
						
							| 140 |  | eleq1 |  |-  ( n = j -> ( n e. ( 0 ... M ) <-> j e. ( 0 ... M ) ) ) | 
						
							| 141 | 140 | 3anbi3d |  |-  ( n = j -> ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) <-> ( ph /\ x e. X /\ j e. ( 0 ... M ) ) ) ) | 
						
							| 142 |  | csbeq1a |  |-  ( n = j -> B = [_ j / n ]_ B ) | 
						
							| 143 | 142 | eleq1d |  |-  ( n = j -> ( B e. CC <-> [_ j / n ]_ B e. CC ) ) | 
						
							| 144 | 141 143 | imbi12d |  |-  ( n = j -> ( ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) <-> ( ( ph /\ x e. X /\ j e. ( 0 ... M ) ) -> [_ j / n ]_ B e. CC ) ) ) | 
						
							| 145 | 135 139 144 4 | vtoclgf |  |-  ( j e. ( 0 ... M ) -> ( ( ph /\ x e. X /\ j e. ( 0 ... M ) ) -> [_ j / n ]_ B e. CC ) ) | 
						
							| 146 | 131 134 145 | sylc |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> [_ j / n ]_ B e. CC ) | 
						
							| 147 | 115 146 | sylanl2 |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> [_ j / n ]_ B e. CC ) | 
						
							| 148 |  | fzofzp1 |  |-  ( j e. ( 0 ..^ M ) -> ( j + 1 ) e. ( 0 ... M ) ) | 
						
							| 149 | 148 | ad2antlr |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> ( j + 1 ) e. ( 0 ... M ) ) | 
						
							| 150 | 115 132 | sylanl2 |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> ph ) | 
						
							| 151 |  | simpr |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> x e. X ) | 
						
							| 152 | 150 151 149 | 3jca |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) ) | 
						
							| 153 |  | nfcv |  |-  F/_ n ( j + 1 ) | 
						
							| 154 |  | nfv |  |-  F/ n ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) | 
						
							| 155 | 153 | nfcsb1 |  |-  F/_ n [_ ( j + 1 ) / n ]_ B | 
						
							| 156 | 155 79 | nfel |  |-  F/ n [_ ( j + 1 ) / n ]_ B e. CC | 
						
							| 157 | 154 156 | nfim |  |-  F/ n ( ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) -> [_ ( j + 1 ) / n ]_ B e. CC ) | 
						
							| 158 |  | eleq1 |  |-  ( n = ( j + 1 ) -> ( n e. ( 0 ... M ) <-> ( j + 1 ) e. ( 0 ... M ) ) ) | 
						
							| 159 | 158 | 3anbi3d |  |-  ( n = ( j + 1 ) -> ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) <-> ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) ) ) | 
						
							| 160 |  | csbeq1a |  |-  ( n = ( j + 1 ) -> B = [_ ( j + 1 ) / n ]_ B ) | 
						
							| 161 | 160 | eleq1d |  |-  ( n = ( j + 1 ) -> ( B e. CC <-> [_ ( j + 1 ) / n ]_ B e. CC ) ) | 
						
							| 162 | 159 161 | imbi12d |  |-  ( n = ( j + 1 ) -> ( ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) <-> ( ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) -> [_ ( j + 1 ) / n ]_ B e. CC ) ) ) | 
						
							| 163 | 153 157 162 4 | vtoclgf |  |-  ( ( j + 1 ) e. ( 0 ... M ) -> ( ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) -> [_ ( j + 1 ) / n ]_ B e. CC ) ) | 
						
							| 164 | 149 152 163 | sylc |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> [_ ( j + 1 ) / n ]_ B e. CC ) | 
						
							| 165 |  | simpl |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ph ) | 
						
							| 166 | 115 | adantl |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> j e. ( 0 ... M ) ) | 
						
							| 167 |  | nfv |  |-  F/ n ( ph /\ j e. ( 0 ... M ) ) | 
						
							| 168 |  | nfcv |  |-  F/_ n ( ( S Dn ( x e. X |-> A ) ) ` j ) | 
						
							| 169 | 56 137 | nfmpt |  |-  F/_ n ( x e. X |-> [_ j / n ]_ B ) | 
						
							| 170 | 168 169 | nfeq |  |-  F/ n ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) | 
						
							| 171 | 167 170 | nfim |  |-  F/ n ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) | 
						
							| 172 | 140 | anbi2d |  |-  ( n = j -> ( ( ph /\ n e. ( 0 ... M ) ) <-> ( ph /\ j e. ( 0 ... M ) ) ) ) | 
						
							| 173 |  | fveq2 |  |-  ( n = j -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` j ) ) | 
						
							| 174 | 142 | mpteq2dv |  |-  ( n = j -> ( x e. X |-> B ) = ( x e. X |-> [_ j / n ]_ B ) ) | 
						
							| 175 | 173 174 | eqeq12d |  |-  ( n = j -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) <-> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) ) | 
						
							| 176 | 172 175 | imbi12d |  |-  ( n = j -> ( ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) <-> ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) ) ) | 
						
							| 177 | 171 176 5 | chvarfv |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) | 
						
							| 178 | 165 166 177 | syl2anc |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) | 
						
							| 179 | 178 | eqcomd |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( x e. X |-> [_ j / n ]_ B ) = ( ( S Dn ( x e. X |-> A ) ) ` j ) ) | 
						
							| 180 | 179 | oveq2d |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( x e. X |-> [_ j / n ]_ B ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) ) | 
						
							| 181 | 165 94 | syl |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( x e. X |-> A ) e. ( CC ^pm S ) ) | 
						
							| 182 |  | dvnp1 |  |-  ( ( S C_ CC /\ ( x e. X |-> A ) e. ( CC ^pm S ) /\ j e. NN0 ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) ) | 
						
							| 183 | 123 181 127 182 | syl3anc |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) ) | 
						
							| 184 | 183 | eqcomd |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) = ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) ) | 
						
							| 185 | 148 | adantl |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( j + 1 ) e. ( 0 ... M ) ) | 
						
							| 186 | 165 185 | jca |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) ) | 
						
							| 187 |  | nfv |  |-  F/ n ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) | 
						
							| 188 |  | nfcv |  |-  F/_ n ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) | 
						
							| 189 | 56 155 | nfmpt |  |-  F/_ n ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) | 
						
							| 190 | 188 189 | nfeq |  |-  F/ n ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) | 
						
							| 191 | 187 190 | nfim |  |-  F/ n ( ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) | 
						
							| 192 | 158 | anbi2d |  |-  ( n = ( j + 1 ) -> ( ( ph /\ n e. ( 0 ... M ) ) <-> ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) ) ) | 
						
							| 193 |  | fveq2 |  |-  ( n = ( j + 1 ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) ) | 
						
							| 194 | 160 | mpteq2dv |  |-  ( n = ( j + 1 ) -> ( x e. X |-> B ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) | 
						
							| 195 | 193 194 | eqeq12d |  |-  ( n = ( j + 1 ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) <-> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) ) | 
						
							| 196 | 192 195 | imbi12d |  |-  ( n = ( j + 1 ) -> ( ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) <-> ( ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) ) ) | 
						
							| 197 | 153 191 196 5 | vtoclgf |  |-  ( ( j + 1 ) e. ( 0 ... M ) -> ( ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) ) | 
						
							| 198 | 185 186 197 | sylc |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) | 
						
							| 199 | 180 184 198 | 3eqtrd |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( x e. X |-> [_ j / n ]_ B ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) | 
						
							| 200 | 6 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> C e. CC ) | 
						
							| 201 | 7 | adantr |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> C =/= 0 ) | 
						
							| 202 | 130 147 164 199 200 201 | dvmptdivc |  |-  ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) | 
						
							| 203 | 202 | adantr |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) | 
						
							| 204 | 129 122 203 | 3eqtrd |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) | 
						
							| 205 | 204 | eqcomd |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) ) | 
						
							| 206 | 205 120 122 | 3eqtrrd |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) | 
						
							| 207 | 120 122 206 | 3eqtrd |  |-  ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) | 
						
							| 208 | 107 108 112 207 | syl21anc |  |-  ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) | 
						
							| 209 | 208 | 3exp |  |-  ( j e. ( 0 ..^ M ) -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) ) ) | 
						
							| 210 | 16 22 28 36 106 209 | fzind2 |  |-  ( n e. ( 0 ... M ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) ) | 
						
							| 211 | 9 10 210 | sylc |  |-  ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) |