Step |
Hyp |
Ref |
Expression |
1 |
|
dvnmptdivc.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvnmptdivc.x |
|- ( ph -> X C_ S ) |
3 |
|
dvnmptdivc.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
4 |
|
dvnmptdivc.b |
|- ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) |
5 |
|
dvnmptdivc.dvn |
|- ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) |
6 |
|
dvnmptdivc.c |
|- ( ph -> C e. CC ) |
7 |
|
dvnmptdivc.cne0 |
|- ( ph -> C =/= 0 ) |
8 |
|
dvnmptdivc.8 |
|- ( ph -> M e. NN0 ) |
9 |
|
simpr |
|- ( ( ph /\ n e. ( 0 ... M ) ) -> n e. ( 0 ... M ) ) |
10 |
|
simpl |
|- ( ( ph /\ n e. ( 0 ... M ) ) -> ph ) |
11 |
|
fveq2 |
|- ( k = 0 -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) ) |
12 |
|
csbeq1 |
|- ( k = 0 -> [_ k / n ]_ B = [_ 0 / n ]_ B ) |
13 |
12
|
oveq1d |
|- ( k = 0 -> ( [_ k / n ]_ B / C ) = ( [_ 0 / n ]_ B / C ) ) |
14 |
13
|
mpteq2dv |
|- ( k = 0 -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) |
15 |
11 14
|
eqeq12d |
|- ( k = 0 -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) ) |
16 |
15
|
imbi2d |
|- ( k = 0 -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) ) ) |
17 |
|
fveq2 |
|- ( k = j -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) |
18 |
|
csbeq1 |
|- ( k = j -> [_ k / n ]_ B = [_ j / n ]_ B ) |
19 |
18
|
oveq1d |
|- ( k = j -> ( [_ k / n ]_ B / C ) = ( [_ j / n ]_ B / C ) ) |
20 |
19
|
mpteq2dv |
|- ( k = j -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) |
21 |
17 20
|
eqeq12d |
|- ( k = j -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) |
22 |
21
|
imbi2d |
|- ( k = j -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) ) |
23 |
|
fveq2 |
|- ( k = ( j + 1 ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) ) |
24 |
|
csbeq1 |
|- ( k = ( j + 1 ) -> [_ k / n ]_ B = [_ ( j + 1 ) / n ]_ B ) |
25 |
24
|
oveq1d |
|- ( k = ( j + 1 ) -> ( [_ k / n ]_ B / C ) = ( [_ ( j + 1 ) / n ]_ B / C ) ) |
26 |
25
|
mpteq2dv |
|- ( k = ( j + 1 ) -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
27 |
23 26
|
eqeq12d |
|- ( k = ( j + 1 ) -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) ) |
28 |
27
|
imbi2d |
|- ( k = ( j + 1 ) -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) ) ) |
29 |
|
fveq2 |
|- ( k = n -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) ) |
30 |
|
csbeq1a |
|- ( n = k -> B = [_ k / n ]_ B ) |
31 |
30
|
equcoms |
|- ( k = n -> B = [_ k / n ]_ B ) |
32 |
31
|
eqcomd |
|- ( k = n -> [_ k / n ]_ B = B ) |
33 |
32
|
oveq1d |
|- ( k = n -> ( [_ k / n ]_ B / C ) = ( B / C ) ) |
34 |
33
|
mpteq2dv |
|- ( k = n -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( B / C ) ) ) |
35 |
29 34
|
eqeq12d |
|- ( k = n -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) ) |
36 |
35
|
imbi2d |
|- ( k = n -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) ) ) |
37 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
38 |
1 37
|
syl |
|- ( ph -> S C_ CC ) |
39 |
|
cnex |
|- CC e. _V |
40 |
39
|
a1i |
|- ( ph -> CC e. _V ) |
41 |
6
|
adantr |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
42 |
7
|
adantr |
|- ( ( ph /\ x e. X ) -> C =/= 0 ) |
43 |
3 41 42
|
divcld |
|- ( ( ph /\ x e. X ) -> ( A / C ) e. CC ) |
44 |
43
|
fmpttd |
|- ( ph -> ( x e. X |-> ( A / C ) ) : X --> CC ) |
45 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( ( x e. X |-> ( A / C ) ) : X --> CC /\ X C_ S ) ) -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) |
46 |
40 1 44 2 45
|
syl22anc |
|- ( ph -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) |
47 |
|
dvn0 |
|- ( ( S C_ CC /\ ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( A / C ) ) ) |
48 |
38 46 47
|
syl2anc |
|- ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( A / C ) ) ) |
49 |
|
id |
|- ( ph -> ph ) |
50 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
51 |
8 50
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
52 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
53 |
51 52
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
54 |
|
nfv |
|- F/ n ( ph /\ 0 e. ( 0 ... M ) ) |
55 |
|
nfcv |
|- F/_ n ( ( S Dn ( x e. X |-> A ) ) ` 0 ) |
56 |
|
nfcv |
|- F/_ n X |
57 |
|
nfcsb1v |
|- F/_ n [_ 0 / n ]_ B |
58 |
56 57
|
nfmpt |
|- F/_ n ( x e. X |-> [_ 0 / n ]_ B ) |
59 |
55 58
|
nfeq |
|- F/ n ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) |
60 |
54 59
|
nfim |
|- F/ n ( ( ph /\ 0 e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) |
61 |
|
c0ex |
|- 0 e. _V |
62 |
|
eleq1 |
|- ( n = 0 -> ( n e. ( 0 ... M ) <-> 0 e. ( 0 ... M ) ) ) |
63 |
62
|
anbi2d |
|- ( n = 0 -> ( ( ph /\ n e. ( 0 ... M ) ) <-> ( ph /\ 0 e. ( 0 ... M ) ) ) ) |
64 |
|
fveq2 |
|- ( n = 0 -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ) |
65 |
|
csbeq1a |
|- ( n = 0 -> B = [_ 0 / n ]_ B ) |
66 |
65
|
mpteq2dv |
|- ( n = 0 -> ( x e. X |-> B ) = ( x e. X |-> [_ 0 / n ]_ B ) ) |
67 |
64 66
|
eqeq12d |
|- ( n = 0 -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) <-> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) ) |
68 |
63 67
|
imbi12d |
|- ( n = 0 -> ( ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) <-> ( ( ph /\ 0 e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) ) ) |
69 |
60 61 68 5
|
vtoclf |
|- ( ( ph /\ 0 e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) |
70 |
49 53 69
|
syl2anc |
|- ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) |
71 |
70
|
fveq1d |
|- ( ph -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ x e. X ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) ) |
73 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
74 |
|
simpl |
|- ( ( ph /\ x e. X ) -> ph ) |
75 |
53
|
adantr |
|- ( ( ph /\ x e. X ) -> 0 e. ( 0 ... M ) ) |
76 |
|
0re |
|- 0 e. RR |
77 |
|
nfcv |
|- F/_ n 0 |
78 |
|
nfv |
|- F/ n ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) |
79 |
|
nfcv |
|- F/_ n CC |
80 |
57 79
|
nfel |
|- F/ n [_ 0 / n ]_ B e. CC |
81 |
78 80
|
nfim |
|- F/ n ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) |
82 |
62
|
3anbi3d |
|- ( n = 0 -> ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) <-> ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) ) ) |
83 |
65
|
eleq1d |
|- ( n = 0 -> ( B e. CC <-> [_ 0 / n ]_ B e. CC ) ) |
84 |
82 83
|
imbi12d |
|- ( n = 0 -> ( ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) <-> ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) ) ) |
85 |
77 81 84 4
|
vtoclgf |
|- ( 0 e. RR -> ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) ) |
86 |
76 85
|
ax-mp |
|- ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) |
87 |
74 73 75 86
|
syl3anc |
|- ( ( ph /\ x e. X ) -> [_ 0 / n ]_ B e. CC ) |
88 |
|
eqid |
|- ( x e. X |-> [_ 0 / n ]_ B ) = ( x e. X |-> [_ 0 / n ]_ B ) |
89 |
88
|
fvmpt2 |
|- ( ( x e. X /\ [_ 0 / n ]_ B e. CC ) -> ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) = [_ 0 / n ]_ B ) |
90 |
73 87 89
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) = [_ 0 / n ]_ B ) |
91 |
72 90
|
eqtr2d |
|- ( ( ph /\ x e. X ) -> [_ 0 / n ]_ B = ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) ) |
92 |
3
|
fmpttd |
|- ( ph -> ( x e. X |-> A ) : X --> CC ) |
93 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( ( x e. X |-> A ) : X --> CC /\ X C_ S ) ) -> ( x e. X |-> A ) e. ( CC ^pm S ) ) |
94 |
40 1 92 2 93
|
syl22anc |
|- ( ph -> ( x e. X |-> A ) e. ( CC ^pm S ) ) |
95 |
|
dvn0 |
|- ( ( S C_ CC /\ ( x e. X |-> A ) e. ( CC ^pm S ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> A ) ) |
96 |
38 94 95
|
syl2anc |
|- ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> A ) ) |
97 |
96
|
fveq1d |
|- ( ph -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> A ) ` x ) ) |
98 |
97
|
adantr |
|- ( ( ph /\ x e. X ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> A ) ` x ) ) |
99 |
|
eqid |
|- ( x e. X |-> A ) = ( x e. X |-> A ) |
100 |
99
|
fvmpt2 |
|- ( ( x e. X /\ A e. CC ) -> ( ( x e. X |-> A ) ` x ) = A ) |
101 |
73 3 100
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( ( x e. X |-> A ) ` x ) = A ) |
102 |
91 98 101
|
3eqtrrd |
|- ( ( ph /\ x e. X ) -> A = [_ 0 / n ]_ B ) |
103 |
102
|
oveq1d |
|- ( ( ph /\ x e. X ) -> ( A / C ) = ( [_ 0 / n ]_ B / C ) ) |
104 |
103
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A / C ) ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) |
105 |
48 104
|
eqtrd |
|- ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) |
106 |
105
|
a1i |
|- ( M e. ( ZZ>= ` 0 ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) ) |
107 |
|
simp3 |
|- ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ph ) |
108 |
|
simp1 |
|- ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> j e. ( 0 ..^ M ) ) |
109 |
|
simpr |
|- ( ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ph ) |
110 |
|
simpl |
|- ( ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) |
111 |
109 110
|
mpd |
|- ( ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) |
112 |
111
|
3adant1 |
|- ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) |
113 |
38
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> S C_ CC ) |
114 |
46
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) |
115 |
|
elfzofz |
|- ( j e. ( 0 ..^ M ) -> j e. ( 0 ... M ) ) |
116 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
117 |
116
|
ad2antlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> j e. NN0 ) |
118 |
115 117
|
sylanl2 |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> j e. NN0 ) |
119 |
|
dvnp1 |
|- ( ( S C_ CC /\ ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) /\ j e. NN0 ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) |
120 |
113 114 118 119
|
syl3anc |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) |
121 |
|
oveq2 |
|- ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) -> ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) = ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) |
122 |
121
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) = ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) |
123 |
38
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> S C_ CC ) |
124 |
46
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) |
125 |
|
simpr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) |
126 |
125 116
|
syl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) |
127 |
115 126
|
sylan2 |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> j e. NN0 ) |
128 |
123 124 127 119
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) |
129 |
128
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) |
130 |
1
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> S e. { RR , CC } ) |
131 |
|
simplr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> j e. ( 0 ... M ) ) |
132 |
49
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ph ) |
133 |
|
simpr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> x e. X ) |
134 |
132 133 131
|
3jca |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ( ph /\ x e. X /\ j e. ( 0 ... M ) ) ) |
135 |
|
nfcv |
|- F/_ n j |
136 |
|
nfv |
|- F/ n ( ph /\ x e. X /\ j e. ( 0 ... M ) ) |
137 |
135
|
nfcsb1 |
|- F/_ n [_ j / n ]_ B |
138 |
137 79
|
nfel |
|- F/ n [_ j / n ]_ B e. CC |
139 |
136 138
|
nfim |
|- F/ n ( ( ph /\ x e. X /\ j e. ( 0 ... M ) ) -> [_ j / n ]_ B e. CC ) |
140 |
|
eleq1 |
|- ( n = j -> ( n e. ( 0 ... M ) <-> j e. ( 0 ... M ) ) ) |
141 |
140
|
3anbi3d |
|- ( n = j -> ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) <-> ( ph /\ x e. X /\ j e. ( 0 ... M ) ) ) ) |
142 |
|
csbeq1a |
|- ( n = j -> B = [_ j / n ]_ B ) |
143 |
142
|
eleq1d |
|- ( n = j -> ( B e. CC <-> [_ j / n ]_ B e. CC ) ) |
144 |
141 143
|
imbi12d |
|- ( n = j -> ( ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) <-> ( ( ph /\ x e. X /\ j e. ( 0 ... M ) ) -> [_ j / n ]_ B e. CC ) ) ) |
145 |
135 139 144 4
|
vtoclgf |
|- ( j e. ( 0 ... M ) -> ( ( ph /\ x e. X /\ j e. ( 0 ... M ) ) -> [_ j / n ]_ B e. CC ) ) |
146 |
131 134 145
|
sylc |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> [_ j / n ]_ B e. CC ) |
147 |
115 146
|
sylanl2 |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> [_ j / n ]_ B e. CC ) |
148 |
|
fzofzp1 |
|- ( j e. ( 0 ..^ M ) -> ( j + 1 ) e. ( 0 ... M ) ) |
149 |
148
|
ad2antlr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> ( j + 1 ) e. ( 0 ... M ) ) |
150 |
115 132
|
sylanl2 |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> ph ) |
151 |
|
simpr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> x e. X ) |
152 |
150 151 149
|
3jca |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) ) |
153 |
|
nfcv |
|- F/_ n ( j + 1 ) |
154 |
|
nfv |
|- F/ n ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) |
155 |
153
|
nfcsb1 |
|- F/_ n [_ ( j + 1 ) / n ]_ B |
156 |
155 79
|
nfel |
|- F/ n [_ ( j + 1 ) / n ]_ B e. CC |
157 |
154 156
|
nfim |
|- F/ n ( ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) -> [_ ( j + 1 ) / n ]_ B e. CC ) |
158 |
|
eleq1 |
|- ( n = ( j + 1 ) -> ( n e. ( 0 ... M ) <-> ( j + 1 ) e. ( 0 ... M ) ) ) |
159 |
158
|
3anbi3d |
|- ( n = ( j + 1 ) -> ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) <-> ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) ) ) |
160 |
|
csbeq1a |
|- ( n = ( j + 1 ) -> B = [_ ( j + 1 ) / n ]_ B ) |
161 |
160
|
eleq1d |
|- ( n = ( j + 1 ) -> ( B e. CC <-> [_ ( j + 1 ) / n ]_ B e. CC ) ) |
162 |
159 161
|
imbi12d |
|- ( n = ( j + 1 ) -> ( ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) <-> ( ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) -> [_ ( j + 1 ) / n ]_ B e. CC ) ) ) |
163 |
153 157 162 4
|
vtoclgf |
|- ( ( j + 1 ) e. ( 0 ... M ) -> ( ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) -> [_ ( j + 1 ) / n ]_ B e. CC ) ) |
164 |
149 152 163
|
sylc |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> [_ ( j + 1 ) / n ]_ B e. CC ) |
165 |
|
simpl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ph ) |
166 |
115
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> j e. ( 0 ... M ) ) |
167 |
|
nfv |
|- F/ n ( ph /\ j e. ( 0 ... M ) ) |
168 |
|
nfcv |
|- F/_ n ( ( S Dn ( x e. X |-> A ) ) ` j ) |
169 |
56 137
|
nfmpt |
|- F/_ n ( x e. X |-> [_ j / n ]_ B ) |
170 |
168 169
|
nfeq |
|- F/ n ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) |
171 |
167 170
|
nfim |
|- F/ n ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) |
172 |
140
|
anbi2d |
|- ( n = j -> ( ( ph /\ n e. ( 0 ... M ) ) <-> ( ph /\ j e. ( 0 ... M ) ) ) ) |
173 |
|
fveq2 |
|- ( n = j -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` j ) ) |
174 |
142
|
mpteq2dv |
|- ( n = j -> ( x e. X |-> B ) = ( x e. X |-> [_ j / n ]_ B ) ) |
175 |
173 174
|
eqeq12d |
|- ( n = j -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) <-> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) ) |
176 |
172 175
|
imbi12d |
|- ( n = j -> ( ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) <-> ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) ) ) |
177 |
171 176 5
|
chvarfv |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) |
178 |
165 166 177
|
syl2anc |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) |
179 |
178
|
eqcomd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( x e. X |-> [_ j / n ]_ B ) = ( ( S Dn ( x e. X |-> A ) ) ` j ) ) |
180 |
179
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( x e. X |-> [_ j / n ]_ B ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) ) |
181 |
165 94
|
syl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( x e. X |-> A ) e. ( CC ^pm S ) ) |
182 |
|
dvnp1 |
|- ( ( S C_ CC /\ ( x e. X |-> A ) e. ( CC ^pm S ) /\ j e. NN0 ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) ) |
183 |
123 181 127 182
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) ) |
184 |
183
|
eqcomd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) = ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) ) |
185 |
148
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( j + 1 ) e. ( 0 ... M ) ) |
186 |
165 185
|
jca |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) ) |
187 |
|
nfv |
|- F/ n ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) |
188 |
|
nfcv |
|- F/_ n ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) |
189 |
56 155
|
nfmpt |
|- F/_ n ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) |
190 |
188 189
|
nfeq |
|- F/ n ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) |
191 |
187 190
|
nfim |
|- F/ n ( ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) |
192 |
158
|
anbi2d |
|- ( n = ( j + 1 ) -> ( ( ph /\ n e. ( 0 ... M ) ) <-> ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) ) ) |
193 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) ) |
194 |
160
|
mpteq2dv |
|- ( n = ( j + 1 ) -> ( x e. X |-> B ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) |
195 |
193 194
|
eqeq12d |
|- ( n = ( j + 1 ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) <-> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) ) |
196 |
192 195
|
imbi12d |
|- ( n = ( j + 1 ) -> ( ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) <-> ( ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) ) ) |
197 |
153 191 196 5
|
vtoclgf |
|- ( ( j + 1 ) e. ( 0 ... M ) -> ( ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) ) |
198 |
185 186 197
|
sylc |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) |
199 |
180 184 198
|
3eqtrd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( x e. X |-> [_ j / n ]_ B ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) |
200 |
6
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> C e. CC ) |
201 |
7
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> C =/= 0 ) |
202 |
130 147 164 199 200 201
|
dvmptdivc |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
203 |
202
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
204 |
129 122 203
|
3eqtrd |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
205 |
204
|
eqcomd |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) ) |
206 |
205 120 122
|
3eqtrrd |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
207 |
120 122 206
|
3eqtrd |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
208 |
107 108 112 207
|
syl21anc |
|- ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
209 |
208
|
3exp |
|- ( j e. ( 0 ..^ M ) -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) ) ) |
210 |
16 22 28 36 106 209
|
fzind2 |
|- ( n e. ( 0 ... M ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) ) |
211 |
9 10 210
|
sylc |
|- ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) |