Step |
Hyp |
Ref |
Expression |
1 |
|
dvnmul.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvnmul.x |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
3 |
|
dvnmul.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
4 |
|
dvnmul.cc |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
5 |
|
dvnmul.n |
|- ( ph -> N e. NN0 ) |
6 |
|
dvnmulf |
|- F = ( x e. X |-> A ) |
7 |
|
dvnmul.f |
|- G = ( x e. X |-> B ) |
8 |
|
dvnmul.dvnf |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn F ) ` k ) : X --> CC ) |
9 |
|
dvnmul.dvng |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn G ) ` k ) : X --> CC ) |
10 |
|
dvnmul.c |
|- C = ( k e. ( 0 ... N ) |-> ( ( S Dn F ) ` k ) ) |
11 |
|
dvnmul.d |
|- D = ( k e. ( 0 ... N ) |-> ( ( S Dn G ) ` k ) ) |
12 |
|
id |
|- ( ph -> ph ) |
13 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
14 |
5 13
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
15 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` 0 ) -> N e. ( 0 ... N ) ) |
16 |
14 15
|
syl |
|- ( ph -> N e. ( 0 ... N ) ) |
17 |
|
eleq1 |
|- ( n = N -> ( n e. ( 0 ... N ) <-> N e. ( 0 ... N ) ) ) |
18 |
|
fveq2 |
|- ( n = N -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) ) |
19 |
|
oveq2 |
|- ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) |
20 |
19
|
sumeq1d |
|- ( n = N -> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... N ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) |
21 |
|
oveq1 |
|- ( n = N -> ( n _C k ) = ( N _C k ) ) |
22 |
|
fvoveq1 |
|- ( n = N -> ( D ` ( n - k ) ) = ( D ` ( N - k ) ) ) |
23 |
22
|
fveq1d |
|- ( n = N -> ( ( D ` ( n - k ) ) ` x ) = ( ( D ` ( N - k ) ) ` x ) ) |
24 |
23
|
oveq2d |
|- ( n = N -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) |
25 |
21 24
|
oveq12d |
|- ( n = N -> ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) = ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) |
26 |
25
|
sumeq2sdv |
|- ( n = N -> sum_ k e. ( 0 ... N ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) |
27 |
20 26
|
eqtrd |
|- ( n = N -> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) |
28 |
27
|
mpteq2dv |
|- ( n = N -> ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) |
29 |
18 28
|
eqeq12d |
|- ( n = N -> ( ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) <-> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) ) |
30 |
29
|
imbi2d |
|- ( n = N -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) ) ) |
31 |
17 30
|
imbi12d |
|- ( n = N -> ( ( n e. ( 0 ... N ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) ) <-> ( N e. ( 0 ... N ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) ) ) ) |
32 |
|
fveq2 |
|- ( m = 0 -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) ) |
33 |
|
simpl |
|- ( ( m = 0 /\ x e. X ) -> m = 0 ) |
34 |
33
|
oveq2d |
|- ( ( m = 0 /\ x e. X ) -> ( 0 ... m ) = ( 0 ... 0 ) ) |
35 |
|
simpll |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> m = 0 ) |
36 |
35
|
oveq1d |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> ( m _C k ) = ( 0 _C k ) ) |
37 |
35
|
fvoveq1d |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> ( D ` ( m - k ) ) = ( D ` ( 0 - k ) ) ) |
38 |
37
|
fveq1d |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> ( ( D ` ( m - k ) ) ` x ) = ( ( D ` ( 0 - k ) ) ` x ) ) |
39 |
38
|
oveq2d |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) |
40 |
36 39
|
oveq12d |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) |
41 |
34 40
|
sumeq12rdv |
|- ( ( m = 0 /\ x e. X ) -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) |
42 |
41
|
mpteq2dva |
|- ( m = 0 -> ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) |
43 |
32 42
|
eqeq12d |
|- ( m = 0 -> ( ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) <-> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) ) |
44 |
43
|
imbi2d |
|- ( m = 0 -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) ) ) |
45 |
|
fveq2 |
|- ( m = i -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) ) |
46 |
|
simpl |
|- ( ( m = i /\ x e. X ) -> m = i ) |
47 |
46
|
oveq2d |
|- ( ( m = i /\ x e. X ) -> ( 0 ... m ) = ( 0 ... i ) ) |
48 |
|
simpll |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> m = i ) |
49 |
48
|
oveq1d |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( m _C k ) = ( i _C k ) ) |
50 |
48
|
fvoveq1d |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( D ` ( m - k ) ) = ( D ` ( i - k ) ) ) |
51 |
50
|
fveq1d |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( D ` ( m - k ) ) ` x ) = ( ( D ` ( i - k ) ) ` x ) ) |
52 |
51
|
oveq2d |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) |
53 |
49 52
|
oveq12d |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) |
54 |
47 53
|
sumeq12rdv |
|- ( ( m = i /\ x e. X ) -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) |
55 |
54
|
mpteq2dva |
|- ( m = i -> ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) |
56 |
45 55
|
eqeq12d |
|- ( m = i -> ( ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) <-> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) ) |
57 |
56
|
imbi2d |
|- ( m = i -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) ) ) |
58 |
|
fveq2 |
|- ( m = ( i + 1 ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) ) |
59 |
|
simpl |
|- ( ( m = ( i + 1 ) /\ x e. X ) -> m = ( i + 1 ) ) |
60 |
59
|
oveq2d |
|- ( ( m = ( i + 1 ) /\ x e. X ) -> ( 0 ... m ) = ( 0 ... ( i + 1 ) ) ) |
61 |
|
simpll |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> m = ( i + 1 ) ) |
62 |
61
|
oveq1d |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( m _C k ) = ( ( i + 1 ) _C k ) ) |
63 |
61
|
fvoveq1d |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( D ` ( m - k ) ) = ( D ` ( ( i + 1 ) - k ) ) ) |
64 |
63
|
fveq1d |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( D ` ( m - k ) ) ` x ) = ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) |
65 |
64
|
oveq2d |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
66 |
62 65
|
oveq12d |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
67 |
60 66
|
sumeq12rdv |
|- ( ( m = ( i + 1 ) /\ x e. X ) -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
68 |
67
|
mpteq2dva |
|- ( m = ( i + 1 ) -> ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
69 |
58 68
|
eqeq12d |
|- ( m = ( i + 1 ) -> ( ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) <-> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
70 |
69
|
imbi2d |
|- ( m = ( i + 1 ) -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) ) |
71 |
|
fveq2 |
|- ( m = n -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) ) |
72 |
|
simpl |
|- ( ( m = n /\ x e. X ) -> m = n ) |
73 |
72
|
oveq2d |
|- ( ( m = n /\ x e. X ) -> ( 0 ... m ) = ( 0 ... n ) ) |
74 |
|
simpll |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> m = n ) |
75 |
74
|
oveq1d |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> ( m _C k ) = ( n _C k ) ) |
76 |
74
|
fvoveq1d |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> ( D ` ( m - k ) ) = ( D ` ( n - k ) ) ) |
77 |
76
|
fveq1d |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> ( ( D ` ( m - k ) ) ` x ) = ( ( D ` ( n - k ) ) ` x ) ) |
78 |
77
|
oveq2d |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) |
79 |
75 78
|
oveq12d |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) |
80 |
73 79
|
sumeq12rdv |
|- ( ( m = n /\ x e. X ) -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) |
81 |
80
|
mpteq2dva |
|- ( m = n -> ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) |
82 |
71 81
|
eqeq12d |
|- ( m = n -> ( ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) <-> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) ) |
83 |
82
|
imbi2d |
|- ( m = n -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) ) ) |
84 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
85 |
1 84
|
syl |
|- ( ph -> S C_ CC ) |
86 |
3 4
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( A x. B ) e. CC ) |
87 |
|
restsspw |
|- ( ( TopOpen ` CCfld ) |`t S ) C_ ~P S |
88 |
87 2
|
sselid |
|- ( ph -> X e. ~P S ) |
89 |
|
elpwi |
|- ( X e. ~P S -> X C_ S ) |
90 |
88 89
|
syl |
|- ( ph -> X C_ S ) |
91 |
|
cnex |
|- CC e. _V |
92 |
91
|
a1i |
|- ( ph -> CC e. _V ) |
93 |
86 90 92 1
|
mptelpm |
|- ( ph -> ( x e. X |-> ( A x. B ) ) e. ( CC ^pm S ) ) |
94 |
|
dvn0 |
|- ( ( S C_ CC /\ ( x e. X |-> ( A x. B ) ) e. ( CC ^pm S ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> ( A x. B ) ) ) |
95 |
85 93 94
|
syl2anc |
|- ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> ( A x. B ) ) ) |
96 |
|
0z |
|- 0 e. ZZ |
97 |
|
fzsn |
|- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
98 |
96 97
|
ax-mp |
|- ( 0 ... 0 ) = { 0 } |
99 |
98
|
sumeq1i |
|- sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) |
100 |
99
|
a1i |
|- ( ( ph /\ x e. X ) -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) |
101 |
|
nfcvd |
|- ( ( ph /\ x e. X ) -> F/_ k ( A x. B ) ) |
102 |
|
nfv |
|- F/ k ( ph /\ x e. X ) |
103 |
|
oveq2 |
|- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
104 |
|
0nn0 |
|- 0 e. NN0 |
105 |
|
bcn0 |
|- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
106 |
104 105
|
ax-mp |
|- ( 0 _C 0 ) = 1 |
107 |
106
|
a1i |
|- ( k = 0 -> ( 0 _C 0 ) = 1 ) |
108 |
103 107
|
eqtrd |
|- ( k = 0 -> ( 0 _C k ) = 1 ) |
109 |
108
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( 0 _C k ) = 1 ) |
110 |
|
fveq2 |
|- ( k = 0 -> ( C ` k ) = ( C ` 0 ) ) |
111 |
110
|
adantl |
|- ( ( ph /\ k = 0 ) -> ( C ` k ) = ( C ` 0 ) ) |
112 |
|
fveq2 |
|- ( k = n -> ( ( S Dn F ) ` k ) = ( ( S Dn F ) ` n ) ) |
113 |
112
|
cbvmptv |
|- ( k e. ( 0 ... N ) |-> ( ( S Dn F ) ` k ) ) = ( n e. ( 0 ... N ) |-> ( ( S Dn F ) ` n ) ) |
114 |
10 113
|
eqtri |
|- C = ( n e. ( 0 ... N ) |-> ( ( S Dn F ) ` n ) ) |
115 |
|
fveq2 |
|- ( n = 0 -> ( ( S Dn F ) ` n ) = ( ( S Dn F ) ` 0 ) ) |
116 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... N ) ) |
117 |
14 116
|
syl |
|- ( ph -> 0 e. ( 0 ... N ) ) |
118 |
|
fvexd |
|- ( ph -> ( ( S Dn F ) ` 0 ) e. _V ) |
119 |
114 115 117 118
|
fvmptd3 |
|- ( ph -> ( C ` 0 ) = ( ( S Dn F ) ` 0 ) ) |
120 |
119
|
adantr |
|- ( ( ph /\ k = 0 ) -> ( C ` 0 ) = ( ( S Dn F ) ` 0 ) ) |
121 |
111 120
|
eqtrd |
|- ( ( ph /\ k = 0 ) -> ( C ` k ) = ( ( S Dn F ) ` 0 ) ) |
122 |
3 90 92 1
|
mptelpm |
|- ( ph -> ( x e. X |-> A ) e. ( CC ^pm S ) ) |
123 |
6 122
|
eqeltrid |
|- ( ph -> F e. ( CC ^pm S ) ) |
124 |
|
dvn0 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
125 |
85 123 124
|
syl2anc |
|- ( ph -> ( ( S Dn F ) ` 0 ) = F ) |
126 |
125
|
adantr |
|- ( ( ph /\ k = 0 ) -> ( ( S Dn F ) ` 0 ) = F ) |
127 |
121 126
|
eqtrd |
|- ( ( ph /\ k = 0 ) -> ( C ` k ) = F ) |
128 |
127
|
fveq1d |
|- ( ( ph /\ k = 0 ) -> ( ( C ` k ) ` x ) = ( F ` x ) ) |
129 |
128
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( C ` k ) ` x ) = ( F ` x ) ) |
130 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
131 |
6
|
fvmpt2 |
|- ( ( x e. X /\ A e. CC ) -> ( F ` x ) = A ) |
132 |
130 3 131
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( F ` x ) = A ) |
133 |
132
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( F ` x ) = A ) |
134 |
129 133
|
eqtrd |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( C ` k ) ` x ) = A ) |
135 |
|
oveq2 |
|- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
136 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
137 |
136
|
a1i |
|- ( k = 0 -> ( 0 - 0 ) = 0 ) |
138 |
135 137
|
eqtrd |
|- ( k = 0 -> ( 0 - k ) = 0 ) |
139 |
138
|
fveq2d |
|- ( k = 0 -> ( D ` ( 0 - k ) ) = ( D ` 0 ) ) |
140 |
139
|
fveq1d |
|- ( k = 0 -> ( ( D ` ( 0 - k ) ) ` x ) = ( ( D ` 0 ) ` x ) ) |
141 |
140
|
adantl |
|- ( ( ph /\ k = 0 ) -> ( ( D ` ( 0 - k ) ) ` x ) = ( ( D ` 0 ) ` x ) ) |
142 |
141
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( D ` ( 0 - k ) ) ` x ) = ( ( D ` 0 ) ` x ) ) |
143 |
|
fveq2 |
|- ( k = n -> ( ( S Dn G ) ` k ) = ( ( S Dn G ) ` n ) ) |
144 |
143
|
cbvmptv |
|- ( k e. ( 0 ... N ) |-> ( ( S Dn G ) ` k ) ) = ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) |
145 |
11 144
|
eqtri |
|- D = ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) |
146 |
145
|
fveq1i |
|- ( D ` 0 ) = ( ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) ` 0 ) |
147 |
146
|
a1i |
|- ( ph -> ( D ` 0 ) = ( ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) ` 0 ) ) |
148 |
|
eqidd |
|- ( ph -> ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) = ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) ) |
149 |
|
fveq2 |
|- ( n = 0 -> ( ( S Dn G ) ` n ) = ( ( S Dn G ) ` 0 ) ) |
150 |
149
|
adantl |
|- ( ( ph /\ n = 0 ) -> ( ( S Dn G ) ` n ) = ( ( S Dn G ) ` 0 ) ) |
151 |
4 90 92 1
|
mptelpm |
|- ( ph -> ( x e. X |-> B ) e. ( CC ^pm S ) ) |
152 |
7 151
|
eqeltrid |
|- ( ph -> G e. ( CC ^pm S ) ) |
153 |
|
dvn0 |
|- ( ( S C_ CC /\ G e. ( CC ^pm S ) ) -> ( ( S Dn G ) ` 0 ) = G ) |
154 |
85 152 153
|
syl2anc |
|- ( ph -> ( ( S Dn G ) ` 0 ) = G ) |
155 |
154
|
adantr |
|- ( ( ph /\ n = 0 ) -> ( ( S Dn G ) ` 0 ) = G ) |
156 |
150 155
|
eqtrd |
|- ( ( ph /\ n = 0 ) -> ( ( S Dn G ) ` n ) = G ) |
157 |
7
|
a1i |
|- ( ph -> G = ( x e. X |-> B ) ) |
158 |
|
mptexg |
|- ( X e. ~P S -> ( x e. X |-> B ) e. _V ) |
159 |
88 158
|
syl |
|- ( ph -> ( x e. X |-> B ) e. _V ) |
160 |
157 159
|
eqeltrd |
|- ( ph -> G e. _V ) |
161 |
148 156 117 160
|
fvmptd |
|- ( ph -> ( ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) ` 0 ) = G ) |
162 |
147 161
|
eqtrd |
|- ( ph -> ( D ` 0 ) = G ) |
163 |
162
|
fveq1d |
|- ( ph -> ( ( D ` 0 ) ` x ) = ( G ` x ) ) |
164 |
163
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( D ` 0 ) ` x ) = ( G ` x ) ) |
165 |
157 4
|
fvmpt2d |
|- ( ( ph /\ x e. X ) -> ( G ` x ) = B ) |
166 |
165
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( G ` x ) = B ) |
167 |
142 164 166
|
3eqtrd |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( D ` ( 0 - k ) ) ` x ) = B ) |
168 |
134 167
|
oveq12d |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) = ( A x. B ) ) |
169 |
109 168
|
oveq12d |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) = ( 1 x. ( A x. B ) ) ) |
170 |
86
|
mullidd |
|- ( ( ph /\ x e. X ) -> ( 1 x. ( A x. B ) ) = ( A x. B ) ) |
171 |
170
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( 1 x. ( A x. B ) ) = ( A x. B ) ) |
172 |
169 171
|
eqtrd |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) = ( A x. B ) ) |
173 |
|
0re |
|- 0 e. RR |
174 |
173
|
a1i |
|- ( ( ph /\ x e. X ) -> 0 e. RR ) |
175 |
101 102 172 174 86
|
sumsnd |
|- ( ( ph /\ x e. X ) -> sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) = ( A x. B ) ) |
176 |
100 175
|
eqtr2d |
|- ( ( ph /\ x e. X ) -> ( A x. B ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) |
177 |
176
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A x. B ) ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) |
178 |
95 177
|
eqtrd |
|- ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) |
179 |
178
|
a1i |
|- ( N e. ( ZZ>= ` 0 ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) ) |
180 |
|
simp3 |
|- ( ( i e. ( 0 ..^ N ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) /\ ph ) -> ph ) |
181 |
|
simp1 |
|- ( ( i e. ( 0 ..^ N ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) /\ ph ) -> i e. ( 0 ..^ N ) ) |
182 |
|
simp2 |
|- ( ( i e. ( 0 ..^ N ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) /\ ph ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) ) |
183 |
|
pm3.35 |
|- ( ( ph /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) |
184 |
180 182 183
|
syl2anc |
|- ( ( i e. ( 0 ..^ N ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) |
185 |
85
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> S C_ CC ) |
186 |
93
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( x e. X |-> ( A x. B ) ) e. ( CC ^pm S ) ) |
187 |
|
elfzonn0 |
|- ( i e. ( 0 ..^ N ) -> i e. NN0 ) |
188 |
187
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> i e. NN0 ) |
189 |
|
dvnp1 |
|- ( ( S C_ CC /\ ( x e. X |-> ( A x. B ) ) e. ( CC ^pm S ) /\ i e. NN0 ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) ) ) |
190 |
185 186 188 189
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) ) ) |
191 |
190
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) ) ) |
192 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) |
193 |
192
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( S _D ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) ) = ( S _D ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) ) |
194 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
195 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
196 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> S e. { RR , CC } ) |
197 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
198 |
|
fzfid |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( 0 ... i ) e. Fin ) |
199 |
187
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> i e. NN0 ) |
200 |
|
elfzelz |
|- ( k e. ( 0 ... i ) -> k e. ZZ ) |
201 |
200
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k e. ZZ ) |
202 |
199 201
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i _C k ) e. NN0 ) |
203 |
202
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i _C k ) e. CC ) |
204 |
203
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( i _C k ) e. CC ) |
205 |
204
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( i _C k ) e. CC ) |
206 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ph ) |
207 |
|
0zd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 e. ZZ ) |
208 |
|
elfzoel2 |
|- ( i e. ( 0 ..^ N ) -> N e. ZZ ) |
209 |
208
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> N e. ZZ ) |
210 |
|
elfzle1 |
|- ( k e. ( 0 ... i ) -> 0 <_ k ) |
211 |
210
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 <_ k ) |
212 |
201
|
zred |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k e. RR ) |
213 |
208
|
zred |
|- ( i e. ( 0 ..^ N ) -> N e. RR ) |
214 |
213
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> N e. RR ) |
215 |
187
|
nn0red |
|- ( i e. ( 0 ..^ N ) -> i e. RR ) |
216 |
215
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> i e. RR ) |
217 |
|
elfzle2 |
|- ( k e. ( 0 ... i ) -> k <_ i ) |
218 |
217
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k <_ i ) |
219 |
|
elfzolt2 |
|- ( i e. ( 0 ..^ N ) -> i < N ) |
220 |
219
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> i < N ) |
221 |
212 216 214 218 220
|
lelttrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k < N ) |
222 |
212 214 221
|
ltled |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k <_ N ) |
223 |
207 209 201 211 222
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k e. ( 0 ... N ) ) |
224 |
223
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> k e. ( 0 ... N ) ) |
225 |
10
|
a1i |
|- ( ph -> C = ( k e. ( 0 ... N ) |-> ( ( S Dn F ) ` k ) ) ) |
226 |
|
fvexd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn F ) ` k ) e. _V ) |
227 |
225 226
|
fvmpt2d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( C ` k ) = ( ( S Dn F ) ` k ) ) |
228 |
227
|
feq1d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( C ` k ) : X --> CC <-> ( ( S Dn F ) ` k ) : X --> CC ) ) |
229 |
8 228
|
mpbird |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( C ` k ) : X --> CC ) |
230 |
206 224 229
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` k ) : X --> CC ) |
231 |
230
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( C ` k ) : X --> CC ) |
232 |
|
simp3 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> x e. X ) |
233 |
231 232
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( ( C ` k ) ` x ) e. CC ) |
234 |
187
|
nn0zd |
|- ( i e. ( 0 ..^ N ) -> i e. ZZ ) |
235 |
234
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> i e. ZZ ) |
236 |
235 201
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) e. ZZ ) |
237 |
|
elfzel2 |
|- ( k e. ( 0 ... i ) -> i e. ZZ ) |
238 |
237
|
zred |
|- ( k e. ( 0 ... i ) -> i e. RR ) |
239 |
200
|
zred |
|- ( k e. ( 0 ... i ) -> k e. RR ) |
240 |
238 239
|
subge0d |
|- ( k e. ( 0 ... i ) -> ( 0 <_ ( i - k ) <-> k <_ i ) ) |
241 |
217 240
|
mpbird |
|- ( k e. ( 0 ... i ) -> 0 <_ ( i - k ) ) |
242 |
241
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 <_ ( i - k ) ) |
243 |
216 212
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) e. RR ) |
244 |
214 212
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N - k ) e. RR ) |
245 |
173
|
a1i |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 e. RR ) |
246 |
214 245
|
jca |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N e. RR /\ 0 e. RR ) ) |
247 |
|
resubcl |
|- ( ( N e. RR /\ 0 e. RR ) -> ( N - 0 ) e. RR ) |
248 |
246 247
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N - 0 ) e. RR ) |
249 |
216 214 212 220
|
ltsub1dd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) < ( N - k ) ) |
250 |
245 212 214 211
|
lesub2dd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N - k ) <_ ( N - 0 ) ) |
251 |
243 244 248 249 250
|
ltletrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) < ( N - 0 ) ) |
252 |
213
|
recnd |
|- ( i e. ( 0 ..^ N ) -> N e. CC ) |
253 |
252
|
subid1d |
|- ( i e. ( 0 ..^ N ) -> ( N - 0 ) = N ) |
254 |
253
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N - 0 ) = N ) |
255 |
251 254
|
breqtrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) < N ) |
256 |
243 214 255
|
ltled |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) <_ N ) |
257 |
207 209 236 242 256
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) e. ( 0 ... N ) ) |
258 |
257
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( i - k ) e. ( 0 ... N ) ) |
259 |
|
ovex |
|- ( i - k ) e. _V |
260 |
|
eleq1 |
|- ( j = ( i - k ) -> ( j e. ( 0 ... N ) <-> ( i - k ) e. ( 0 ... N ) ) ) |
261 |
260
|
anbi2d |
|- ( j = ( i - k ) -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ ( i - k ) e. ( 0 ... N ) ) ) ) |
262 |
|
fveq2 |
|- ( j = ( i - k ) -> ( ( S Dn G ) ` j ) = ( ( S Dn G ) ` ( i - k ) ) ) |
263 |
262
|
feq1d |
|- ( j = ( i - k ) -> ( ( ( S Dn G ) ` j ) : X --> CC <-> ( ( S Dn G ) ` ( i - k ) ) : X --> CC ) ) |
264 |
261 263
|
imbi12d |
|- ( j = ( i - k ) -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( S Dn G ) ` j ) : X --> CC ) <-> ( ( ph /\ ( i - k ) e. ( 0 ... N ) ) -> ( ( S Dn G ) ` ( i - k ) ) : X --> CC ) ) ) |
265 |
|
nfv |
|- F/ k ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( S Dn G ) ` j ) : X --> CC ) |
266 |
|
eleq1 |
|- ( k = j -> ( k e. ( 0 ... N ) <-> j e. ( 0 ... N ) ) ) |
267 |
266
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. ( 0 ... N ) ) <-> ( ph /\ j e. ( 0 ... N ) ) ) ) |
268 |
|
fveq2 |
|- ( k = j -> ( ( S Dn G ) ` k ) = ( ( S Dn G ) ` j ) ) |
269 |
268
|
feq1d |
|- ( k = j -> ( ( ( S Dn G ) ` k ) : X --> CC <-> ( ( S Dn G ) ` j ) : X --> CC ) ) |
270 |
267 269
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn G ) ` k ) : X --> CC ) <-> ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( S Dn G ) ` j ) : X --> CC ) ) ) |
271 |
265 270 9
|
chvarfv |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( S Dn G ) ` j ) : X --> CC ) |
272 |
259 264 271
|
vtocl |
|- ( ( ph /\ ( i - k ) e. ( 0 ... N ) ) -> ( ( S Dn G ) ` ( i - k ) ) : X --> CC ) |
273 |
206 258 272
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( i - k ) ) : X --> CC ) |
274 |
|
fveq2 |
|- ( n = ( i - k ) -> ( ( S Dn G ) ` n ) = ( ( S Dn G ) ` ( i - k ) ) ) |
275 |
|
fvexd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( i - k ) ) e. _V ) |
276 |
145 274 257 275
|
fvmptd3 |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( D ` ( i - k ) ) = ( ( S Dn G ) ` ( i - k ) ) ) |
277 |
276
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( i - k ) ) = ( ( S Dn G ) ` ( i - k ) ) ) |
278 |
277
|
feq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( D ` ( i - k ) ) : X --> CC <-> ( ( S Dn G ) ` ( i - k ) ) : X --> CC ) ) |
279 |
273 278
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( i - k ) ) : X --> CC ) |
280 |
279
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( D ` ( i - k ) ) : X --> CC ) |
281 |
280 232
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( ( D ` ( i - k ) ) ` x ) e. CC ) |
282 |
233 281
|
mulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) e. CC ) |
283 |
205 282
|
mulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) e. CC ) |
284 |
205
|
3expa |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( i _C k ) e. CC ) |
285 |
235
|
peano2zd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i + 1 ) e. ZZ ) |
286 |
285 201
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) e. ZZ ) |
287 |
|
peano2re |
|- ( i e. RR -> ( i + 1 ) e. RR ) |
288 |
238 287
|
syl |
|- ( k e. ( 0 ... i ) -> ( i + 1 ) e. RR ) |
289 |
|
peano2re |
|- ( k e. RR -> ( k + 1 ) e. RR ) |
290 |
239 289
|
syl |
|- ( k e. ( 0 ... i ) -> ( k + 1 ) e. RR ) |
291 |
239
|
ltp1d |
|- ( k e. ( 0 ... i ) -> k < ( k + 1 ) ) |
292 |
|
1red |
|- ( k e. ( 0 ... i ) -> 1 e. RR ) |
293 |
239 238 292 217
|
leadd1dd |
|- ( k e. ( 0 ... i ) -> ( k + 1 ) <_ ( i + 1 ) ) |
294 |
239 290 288 291 293
|
ltletrd |
|- ( k e. ( 0 ... i ) -> k < ( i + 1 ) ) |
295 |
239 288 294
|
ltled |
|- ( k e. ( 0 ... i ) -> k <_ ( i + 1 ) ) |
296 |
295
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k <_ ( i + 1 ) ) |
297 |
216 287
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i + 1 ) e. RR ) |
298 |
297 212
|
subge0d |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( 0 <_ ( ( i + 1 ) - k ) <-> k <_ ( i + 1 ) ) ) |
299 |
296 298
|
mpbird |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 <_ ( ( i + 1 ) - k ) ) |
300 |
297 212
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) e. RR ) |
301 |
|
elfzop1le2 |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) <_ N ) |
302 |
301
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i + 1 ) <_ N ) |
303 |
297 214 212 302
|
lesub1dd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) <_ ( N - k ) ) |
304 |
250 254
|
breqtrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N - k ) <_ N ) |
305 |
300 244 214 303 304
|
letrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) <_ N ) |
306 |
207 209 286 299 305
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) |
307 |
306
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) |
308 |
|
ovex |
|- ( ( i + 1 ) - k ) e. _V |
309 |
|
eleq1 |
|- ( j = ( ( i + 1 ) - k ) -> ( j e. ( 0 ... N ) <-> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) ) |
310 |
309
|
anbi2d |
|- ( j = ( ( i + 1 ) - k ) -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ ( ( i + 1 ) - k ) e. ( 0 ... N ) ) ) ) |
311 |
|
fveq2 |
|- ( j = ( ( i + 1 ) - k ) -> ( ( S Dn G ) ` j ) = ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) ) |
312 |
311
|
feq1d |
|- ( j = ( ( i + 1 ) - k ) -> ( ( ( S Dn G ) ` j ) : X --> CC <-> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) : X --> CC ) ) |
313 |
310 312
|
imbi12d |
|- ( j = ( ( i + 1 ) - k ) -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( S Dn G ) ` j ) : X --> CC ) <-> ( ( ph /\ ( ( i + 1 ) - k ) e. ( 0 ... N ) ) -> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) : X --> CC ) ) ) |
314 |
308 313 271
|
vtocl |
|- ( ( ph /\ ( ( i + 1 ) - k ) e. ( 0 ... N ) ) -> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) : X --> CC ) |
315 |
206 307 314
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) : X --> CC ) |
316 |
145
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> D = ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) ) |
317 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ n = ( ( i + 1 ) - k ) ) -> n = ( ( i + 1 ) - k ) ) |
318 |
317
|
fveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ n = ( ( i + 1 ) - k ) ) -> ( ( S Dn G ) ` n ) = ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) ) |
319 |
|
fvexd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) e. _V ) |
320 |
316 318 307 319
|
fvmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( ( i + 1 ) - k ) ) = ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) ) |
321 |
320
|
feq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( D ` ( ( i + 1 ) - k ) ) : X --> CC <-> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) : X --> CC ) ) |
322 |
315 321
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( ( i + 1 ) - k ) ) : X --> CC ) |
323 |
322
|
ffvelcdmda |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) |
324 |
233
|
3expa |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( C ` k ) ` x ) e. CC ) |
325 |
323 324
|
mulcomd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
326 |
325
|
oveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) = ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
327 |
201
|
peano2zd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) e. ZZ ) |
328 |
173
|
a1i |
|- ( k e. ( 0 ... i ) -> 0 e. RR ) |
329 |
328 239 290 210 291
|
lelttrd |
|- ( k e. ( 0 ... i ) -> 0 < ( k + 1 ) ) |
330 |
328 290 329
|
ltled |
|- ( k e. ( 0 ... i ) -> 0 <_ ( k + 1 ) ) |
331 |
330
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 <_ ( k + 1 ) ) |
332 |
212 289
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) e. RR ) |
333 |
293
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) <_ ( i + 1 ) ) |
334 |
332 297 214 333 302
|
letrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) <_ N ) |
335 |
207 209 327 331 334
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) e. ( 0 ... N ) ) |
336 |
335
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) e. ( 0 ... N ) ) |
337 |
|
ovex |
|- ( k + 1 ) e. _V |
338 |
|
eleq1 |
|- ( j = ( k + 1 ) -> ( j e. ( 0 ... N ) <-> ( k + 1 ) e. ( 0 ... N ) ) ) |
339 |
338
|
anbi2d |
|- ( j = ( k + 1 ) -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ ( k + 1 ) e. ( 0 ... N ) ) ) ) |
340 |
|
fveq2 |
|- ( j = ( k + 1 ) -> ( C ` j ) = ( C ` ( k + 1 ) ) ) |
341 |
340
|
feq1d |
|- ( j = ( k + 1 ) -> ( ( C ` j ) : X --> CC <-> ( C ` ( k + 1 ) ) : X --> CC ) ) |
342 |
339 341
|
imbi12d |
|- ( j = ( k + 1 ) -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> ( C ` j ) : X --> CC ) <-> ( ( ph /\ ( k + 1 ) e. ( 0 ... N ) ) -> ( C ` ( k + 1 ) ) : X --> CC ) ) ) |
343 |
|
nfv |
|- F/ k ( ph /\ j e. ( 0 ... N ) ) |
344 |
|
nfmpt1 |
|- F/_ k ( k e. ( 0 ... N ) |-> ( ( S Dn F ) ` k ) ) |
345 |
10 344
|
nfcxfr |
|- F/_ k C |
346 |
|
nfcv |
|- F/_ k j |
347 |
345 346
|
nffv |
|- F/_ k ( C ` j ) |
348 |
|
nfcv |
|- F/_ k X |
349 |
|
nfcv |
|- F/_ k CC |
350 |
347 348 349
|
nff |
|- F/ k ( C ` j ) : X --> CC |
351 |
343 350
|
nfim |
|- F/ k ( ( ph /\ j e. ( 0 ... N ) ) -> ( C ` j ) : X --> CC ) |
352 |
|
fveq2 |
|- ( k = j -> ( C ` k ) = ( C ` j ) ) |
353 |
352
|
feq1d |
|- ( k = j -> ( ( C ` k ) : X --> CC <-> ( C ` j ) : X --> CC ) ) |
354 |
267 353
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( C ` k ) : X --> CC ) <-> ( ( ph /\ j e. ( 0 ... N ) ) -> ( C ` j ) : X --> CC ) ) ) |
355 |
351 354 229
|
chvarfv |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( C ` j ) : X --> CC ) |
356 |
337 342 355
|
vtocl |
|- ( ( ph /\ ( k + 1 ) e. ( 0 ... N ) ) -> ( C ` ( k + 1 ) ) : X --> CC ) |
357 |
206 336 356
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` ( k + 1 ) ) : X --> CC ) |
358 |
357
|
ffvelcdmda |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( C ` ( k + 1 ) ) ` x ) e. CC ) |
359 |
281
|
3expa |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( D ` ( i - k ) ) ` x ) e. CC ) |
360 |
358 359
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) e. CC ) |
361 |
323 324
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) e. CC ) |
362 |
360 361
|
addcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) e. CC ) |
363 |
326 362
|
eqeltrrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
364 |
284 363
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) e. CC ) |
365 |
364
|
3impa |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) e. CC ) |
366 |
206 1
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> S e. { RR , CC } ) |
367 |
173
|
a1i |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> 0 e. RR ) |
368 |
206 2
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
369 |
366 368 204
|
dvmptconst |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( i _C k ) ) ) = ( x e. X |-> 0 ) ) |
370 |
282
|
3expa |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) e. CC ) |
371 |
206 224 227
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` k ) = ( ( S Dn F ) ` k ) ) |
372 |
371
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn F ) ` k ) = ( C ` k ) ) |
373 |
230
|
feqmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` k ) = ( x e. X |-> ( ( C ` k ) ` x ) ) ) |
374 |
372 373
|
eqtr2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( x e. X |-> ( ( C ` k ) ` x ) ) = ( ( S Dn F ) ` k ) ) |
375 |
374
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( C ` k ) ` x ) ) ) = ( S _D ( ( S Dn F ) ` k ) ) ) |
376 |
366 84
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> S C_ CC ) |
377 |
206 123
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> F e. ( CC ^pm S ) ) |
378 |
|
elfznn0 |
|- ( k e. ( 0 ... i ) -> k e. NN0 ) |
379 |
378
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> k e. NN0 ) |
380 |
|
dvnp1 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` ( k + 1 ) ) = ( S _D ( ( S Dn F ) ` k ) ) ) |
381 |
376 377 379 380
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn F ) ` ( k + 1 ) ) = ( S _D ( ( S Dn F ) ` k ) ) ) |
382 |
381
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( ( S Dn F ) ` k ) ) = ( ( S Dn F ) ` ( k + 1 ) ) ) |
383 |
|
fveq2 |
|- ( n = ( k + 1 ) -> ( ( S Dn F ) ` n ) = ( ( S Dn F ) ` ( k + 1 ) ) ) |
384 |
|
fvexd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn F ) ` ( k + 1 ) ) e. _V ) |
385 |
114 383 336 384
|
fvmptd3 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` ( k + 1 ) ) = ( ( S Dn F ) ` ( k + 1 ) ) ) |
386 |
385
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn F ) ` ( k + 1 ) ) = ( C ` ( k + 1 ) ) ) |
387 |
357
|
feqmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` ( k + 1 ) ) = ( x e. X |-> ( ( C ` ( k + 1 ) ) ` x ) ) ) |
388 |
386 387
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn F ) ` ( k + 1 ) ) = ( x e. X |-> ( ( C ` ( k + 1 ) ) ` x ) ) ) |
389 |
375 382 388
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( C ` k ) ` x ) ) ) = ( x e. X |-> ( ( C ` ( k + 1 ) ) ` x ) ) ) |
390 |
277
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( i - k ) ) = ( D ` ( i - k ) ) ) |
391 |
279
|
feqmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( i - k ) ) = ( x e. X |-> ( ( D ` ( i - k ) ) ` x ) ) ) |
392 |
390 391
|
eqtr2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( x e. X |-> ( ( D ` ( i - k ) ) ` x ) ) = ( ( S Dn G ) ` ( i - k ) ) ) |
393 |
392
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( D ` ( i - k ) ) ` x ) ) ) = ( S _D ( ( S Dn G ) ` ( i - k ) ) ) ) |
394 |
206 152
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> G e. ( CC ^pm S ) ) |
395 |
|
fznn0sub |
|- ( k e. ( 0 ... i ) -> ( i - k ) e. NN0 ) |
396 |
395
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( i - k ) e. NN0 ) |
397 |
|
dvnp1 |
|- ( ( S C_ CC /\ G e. ( CC ^pm S ) /\ ( i - k ) e. NN0 ) -> ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) = ( S _D ( ( S Dn G ) ` ( i - k ) ) ) ) |
398 |
376 394 396 397
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) = ( S _D ( ( S Dn G ) ` ( i - k ) ) ) ) |
399 |
398
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( ( S Dn G ) ` ( i - k ) ) ) = ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) ) |
400 |
216
|
recnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> i e. CC ) |
401 |
|
1cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 1 e. CC ) |
402 |
212
|
recnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k e. CC ) |
403 |
400 401 402
|
addsubd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) = ( ( i - k ) + 1 ) ) |
404 |
403
|
eqcomd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i - k ) + 1 ) = ( ( i + 1 ) - k ) ) |
405 |
404
|
fveq2d |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) = ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) ) |
406 |
405
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) = ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) ) |
407 |
320
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) = ( D ` ( ( i + 1 ) - k ) ) ) |
408 |
322
|
feqmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( ( i + 1 ) - k ) ) = ( x e. X |-> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
409 |
406 407 408
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) = ( x e. X |-> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
410 |
393 399 409
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( D ` ( i - k ) ) ` x ) ) ) = ( x e. X |-> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
411 |
366 324 358 389 359 323 410
|
dvmptmul |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) = ( x e. X |-> ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) ) ) |
412 |
366 284 367 369 370 362 411
|
dvmptmul |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) = ( x e. X |-> ( ( 0 x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) ) ) ) |
413 |
370
|
mul02d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( 0 x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = 0 ) |
414 |
326
|
oveq1d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) = ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) x. ( i _C k ) ) ) |
415 |
363 284
|
mulcomd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) x. ( i _C k ) ) = ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
416 |
414 415
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) = ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
417 |
413 416
|
oveq12d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( 0 x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) ) = ( 0 + ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
418 |
364
|
addlidd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( 0 + ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
419 |
417 418
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( 0 x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) ) = ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
420 |
419
|
mpteq2dva |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( x e. X |-> ( ( 0 x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) ) ) = ( x e. X |-> ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
421 |
412 420
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) = ( x e. X |-> ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
422 |
194 195 196 197 198 283 365 421
|
dvmptfsum |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( S _D ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
423 |
204
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( i _C k ) e. CC ) |
424 |
360
|
an32s |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) e. CC ) |
425 |
|
anass |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) <-> ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( k e. ( 0 ... i ) /\ x e. X ) ) ) |
426 |
|
ancom |
|- ( ( k e. ( 0 ... i ) /\ x e. X ) <-> ( x e. X /\ k e. ( 0 ... i ) ) ) |
427 |
426
|
anbi2i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( k e. ( 0 ... i ) /\ x e. X ) ) <-> ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( x e. X /\ k e. ( 0 ... i ) ) ) ) |
428 |
|
anass |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) <-> ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( x e. X /\ k e. ( 0 ... i ) ) ) ) |
429 |
428
|
bicomi |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( x e. X /\ k e. ( 0 ... i ) ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) ) |
430 |
427 429
|
bitri |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( k e. ( 0 ... i ) /\ x e. X ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) ) |
431 |
425 430
|
bitri |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) <-> ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) ) |
432 |
431
|
imbi1i |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( C ` k ) ` x ) e. CC ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( C ` k ) ` x ) e. CC ) ) |
433 |
324 432
|
mpbi |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( C ` k ) ` x ) e. CC ) |
434 |
431
|
imbi1i |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) ) |
435 |
323 434
|
mpbi |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) |
436 |
433 435
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) e. CC ) |
437 |
423 424 436
|
adddid |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
438 |
437
|
sumeq2dv |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... i ) ( ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
439 |
198
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 0 ... i ) e. Fin ) |
440 |
423 424
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) e. CC ) |
441 |
423 436
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
442 |
439 440 441
|
fsumadd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
443 |
|
oveq2 |
|- ( k = h -> ( i _C k ) = ( i _C h ) ) |
444 |
|
fvoveq1 |
|- ( k = h -> ( C ` ( k + 1 ) ) = ( C ` ( h + 1 ) ) ) |
445 |
444
|
fveq1d |
|- ( k = h -> ( ( C ` ( k + 1 ) ) ` x ) = ( ( C ` ( h + 1 ) ) ` x ) ) |
446 |
|
oveq2 |
|- ( k = h -> ( i - k ) = ( i - h ) ) |
447 |
446
|
fveq2d |
|- ( k = h -> ( D ` ( i - k ) ) = ( D ` ( i - h ) ) ) |
448 |
447
|
fveq1d |
|- ( k = h -> ( ( D ` ( i - k ) ) ` x ) = ( ( D ` ( i - h ) ) ` x ) ) |
449 |
445 448
|
oveq12d |
|- ( k = h -> ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) = ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) |
450 |
443 449
|
oveq12d |
|- ( k = h -> ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) ) |
451 |
|
nfcv |
|- F/_ h ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) |
452 |
|
nfcv |
|- F/_ k ( i _C h ) |
453 |
|
nfcv |
|- F/_ k x. |
454 |
|
nfcv |
|- F/_ k ( h + 1 ) |
455 |
345 454
|
nffv |
|- F/_ k ( C ` ( h + 1 ) ) |
456 |
|
nfcv |
|- F/_ k x |
457 |
455 456
|
nffv |
|- F/_ k ( ( C ` ( h + 1 ) ) ` x ) |
458 |
|
nfmpt1 |
|- F/_ k ( k e. ( 0 ... N ) |-> ( ( S Dn G ) ` k ) ) |
459 |
11 458
|
nfcxfr |
|- F/_ k D |
460 |
|
nfcv |
|- F/_ k ( i - h ) |
461 |
459 460
|
nffv |
|- F/_ k ( D ` ( i - h ) ) |
462 |
461 456
|
nffv |
|- F/_ k ( ( D ` ( i - h ) ) ` x ) |
463 |
457 453 462
|
nfov |
|- F/_ k ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) |
464 |
452 453 463
|
nfov |
|- F/_ k ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) |
465 |
450 451 464
|
cbvsum |
|- sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = sum_ h e. ( 0 ... i ) ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) |
466 |
465
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = sum_ h e. ( 0 ... i ) ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) ) |
467 |
|
1zzd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> 1 e. ZZ ) |
468 |
96
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> 0 e. ZZ ) |
469 |
234
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> i e. ZZ ) |
470 |
|
nfv |
|- F/ k ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) |
471 |
|
nfcv |
|- F/_ k h |
472 |
|
nfcv |
|- F/_ k ( 0 ... i ) |
473 |
471 472
|
nfel |
|- F/ k h e. ( 0 ... i ) |
474 |
470 473
|
nfan |
|- F/ k ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ h e. ( 0 ... i ) ) |
475 |
464 349
|
nfel |
|- F/ k ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) e. CC |
476 |
474 475
|
nfim |
|- F/ k ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ h e. ( 0 ... i ) ) -> ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) e. CC ) |
477 |
|
eleq1 |
|- ( k = h -> ( k e. ( 0 ... i ) <-> h e. ( 0 ... i ) ) ) |
478 |
477
|
anbi2d |
|- ( k = h -> ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ h e. ( 0 ... i ) ) ) ) |
479 |
450
|
eleq1d |
|- ( k = h -> ( ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) e. CC <-> ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) e. CC ) ) |
480 |
478 479
|
imbi12d |
|- ( k = h -> ( ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) e. CC ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ h e. ( 0 ... i ) ) -> ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) e. CC ) ) ) |
481 |
476 480 440
|
chvarfv |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ h e. ( 0 ... i ) ) -> ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) e. CC ) |
482 |
|
oveq2 |
|- ( h = ( j - 1 ) -> ( i _C h ) = ( i _C ( j - 1 ) ) ) |
483 |
|
fvoveq1 |
|- ( h = ( j - 1 ) -> ( C ` ( h + 1 ) ) = ( C ` ( ( j - 1 ) + 1 ) ) ) |
484 |
483
|
fveq1d |
|- ( h = ( j - 1 ) -> ( ( C ` ( h + 1 ) ) ` x ) = ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) ) |
485 |
|
oveq2 |
|- ( h = ( j - 1 ) -> ( i - h ) = ( i - ( j - 1 ) ) ) |
486 |
485
|
fveq2d |
|- ( h = ( j - 1 ) -> ( D ` ( i - h ) ) = ( D ` ( i - ( j - 1 ) ) ) ) |
487 |
486
|
fveq1d |
|- ( h = ( j - 1 ) -> ( ( D ` ( i - h ) ) ` x ) = ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) |
488 |
484 487
|
oveq12d |
|- ( h = ( j - 1 ) -> ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) = ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) |
489 |
482 488
|
oveq12d |
|- ( h = ( j - 1 ) -> ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) = ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) ) |
490 |
467 468 469 481 489
|
fsumshft |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ h e. ( 0 ... i ) ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) = sum_ j e. ( ( 0 + 1 ) ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) ) |
491 |
466 490
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = sum_ j e. ( ( 0 + 1 ) ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) ) |
492 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
493 |
492
|
oveq1i |
|- ( ( 0 + 1 ) ... ( i + 1 ) ) = ( 1 ... ( i + 1 ) ) |
494 |
493
|
sumeq1i |
|- sum_ j e. ( ( 0 + 1 ) ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) |
495 |
494
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( ( 0 + 1 ) ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) ) |
496 |
|
elfzelz |
|- ( j e. ( 1 ... ( i + 1 ) ) -> j e. ZZ ) |
497 |
496
|
zcnd |
|- ( j e. ( 1 ... ( i + 1 ) ) -> j e. CC ) |
498 |
|
1cnd |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 1 e. CC ) |
499 |
497 498
|
npcand |
|- ( j e. ( 1 ... ( i + 1 ) ) -> ( ( j - 1 ) + 1 ) = j ) |
500 |
499
|
fveq2d |
|- ( j e. ( 1 ... ( i + 1 ) ) -> ( C ` ( ( j - 1 ) + 1 ) ) = ( C ` j ) ) |
501 |
500
|
fveq1d |
|- ( j e. ( 1 ... ( i + 1 ) ) -> ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) = ( ( C ` j ) ` x ) ) |
502 |
501
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) = ( ( C ` j ) ` x ) ) |
503 |
215
|
recnd |
|- ( i e. ( 0 ..^ N ) -> i e. CC ) |
504 |
503
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> i e. CC ) |
505 |
497
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. CC ) |
506 |
498
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 1 e. CC ) |
507 |
504 505 506
|
subsub3d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i - ( j - 1 ) ) = ( ( i + 1 ) - j ) ) |
508 |
507
|
fveq2d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( D ` ( i - ( j - 1 ) ) ) = ( D ` ( ( i + 1 ) - j ) ) ) |
509 |
508
|
fveq1d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( D ` ( i - ( j - 1 ) ) ) ` x ) = ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) |
510 |
502 509
|
oveq12d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) = ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) |
511 |
510
|
oveq2d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) |
512 |
511
|
sumeq2dv |
|- ( i e. ( 0 ..^ N ) -> sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) |
513 |
512
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) |
514 |
|
nfv |
|- F/ j ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) |
515 |
|
nfcv |
|- F/_ j ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) |
516 |
|
fzfid |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 ... ( i + 1 ) ) e. Fin ) |
517 |
187
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> i e. NN0 ) |
518 |
496
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. ZZ ) |
519 |
|
1zzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 1 e. ZZ ) |
520 |
518 519
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( j - 1 ) e. ZZ ) |
521 |
517 520
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i _C ( j - 1 ) ) e. NN0 ) |
522 |
521
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
523 |
522
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
524 |
523
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
525 |
12
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ph ) |
526 |
|
0zd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 0 e. ZZ ) |
527 |
208
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> N e. ZZ ) |
528 |
173
|
a1i |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 0 e. RR ) |
529 |
496
|
zred |
|- ( j e. ( 1 ... ( i + 1 ) ) -> j e. RR ) |
530 |
|
1red |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 1 e. RR ) |
531 |
|
0lt1 |
|- 0 < 1 |
532 |
531
|
a1i |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 0 < 1 ) |
533 |
|
elfzle1 |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 1 <_ j ) |
534 |
528 530 529 532 533
|
ltletrd |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 0 < j ) |
535 |
528 529 534
|
ltled |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 0 <_ j ) |
536 |
535
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 0 <_ j ) |
537 |
529
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. RR ) |
538 |
215
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> i e. RR ) |
539 |
|
1red |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 1 e. RR ) |
540 |
538 539
|
readdcld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i + 1 ) e. RR ) |
541 |
213
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> N e. RR ) |
542 |
|
elfzle2 |
|- ( j e. ( 1 ... ( i + 1 ) ) -> j <_ ( i + 1 ) ) |
543 |
542
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j <_ ( i + 1 ) ) |
544 |
301
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i + 1 ) <_ N ) |
545 |
537 540 541 543 544
|
letrd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j <_ N ) |
546 |
526 527 518 536 545
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. ( 0 ... N ) ) |
547 |
546
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. ( 0 ... N ) ) |
548 |
525 547 355
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( C ` j ) : X --> CC ) |
549 |
548
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( C ` j ) : X --> CC ) |
550 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> x e. X ) |
551 |
549 550
|
ffvelcdmd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( C ` j ) ` x ) e. CC ) |
552 |
234
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> i e. ZZ ) |
553 |
552
|
peano2zd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i + 1 ) e. ZZ ) |
554 |
553 518
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) e. ZZ ) |
555 |
540 537
|
subge0d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( 0 <_ ( ( i + 1 ) - j ) <-> j <_ ( i + 1 ) ) ) |
556 |
543 555
|
mpbird |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 0 <_ ( ( i + 1 ) - j ) ) |
557 |
540 537
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) e. RR ) |
558 |
557
|
leidd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) <_ ( ( i + 1 ) - j ) ) |
559 |
529 534
|
elrpd |
|- ( j e. ( 1 ... ( i + 1 ) ) -> j e. RR+ ) |
560 |
559
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. RR+ ) |
561 |
540 560
|
ltsubrpd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) < ( i + 1 ) ) |
562 |
557 540 541 561 544
|
ltletrd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) < N ) |
563 |
557 557 541 558 562
|
lelttrd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) < N ) |
564 |
557 541 563
|
ltled |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) <_ N ) |
565 |
526 527 554 556 564
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) e. ( 0 ... N ) ) |
566 |
565
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) e. ( 0 ... N ) ) |
567 |
|
nfv |
|- F/ k ( ph /\ ( ( i + 1 ) - j ) e. ( 0 ... N ) ) |
568 |
|
nfcv |
|- F/_ k ( ( i + 1 ) - j ) |
569 |
459 568
|
nffv |
|- F/_ k ( D ` ( ( i + 1 ) - j ) ) |
570 |
569 348 349
|
nff |
|- F/ k ( D ` ( ( i + 1 ) - j ) ) : X --> CC |
571 |
567 570
|
nfim |
|- F/ k ( ( ph /\ ( ( i + 1 ) - j ) e. ( 0 ... N ) ) -> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) |
572 |
|
ovex |
|- ( ( i + 1 ) - j ) e. _V |
573 |
|
eleq1 |
|- ( k = ( ( i + 1 ) - j ) -> ( k e. ( 0 ... N ) <-> ( ( i + 1 ) - j ) e. ( 0 ... N ) ) ) |
574 |
573
|
anbi2d |
|- ( k = ( ( i + 1 ) - j ) -> ( ( ph /\ k e. ( 0 ... N ) ) <-> ( ph /\ ( ( i + 1 ) - j ) e. ( 0 ... N ) ) ) ) |
575 |
|
fveq2 |
|- ( k = ( ( i + 1 ) - j ) -> ( D ` k ) = ( D ` ( ( i + 1 ) - j ) ) ) |
576 |
575
|
feq1d |
|- ( k = ( ( i + 1 ) - j ) -> ( ( D ` k ) : X --> CC <-> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) ) |
577 |
574 576
|
imbi12d |
|- ( k = ( ( i + 1 ) - j ) -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) : X --> CC ) <-> ( ( ph /\ ( ( i + 1 ) - j ) e. ( 0 ... N ) ) -> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) ) ) |
578 |
11
|
a1i |
|- ( ph -> D = ( k e. ( 0 ... N ) |-> ( ( S Dn G ) ` k ) ) ) |
579 |
|
fvexd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn G ) ` k ) e. _V ) |
580 |
578 579
|
fvmpt2d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) = ( ( S Dn G ) ` k ) ) |
581 |
580
|
feq1d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( D ` k ) : X --> CC <-> ( ( S Dn G ) ` k ) : X --> CC ) ) |
582 |
9 581
|
mpbird |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) : X --> CC ) |
583 |
571 572 577 582
|
vtoclf |
|- ( ( ph /\ ( ( i + 1 ) - j ) e. ( 0 ... N ) ) -> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) |
584 |
525 566 583
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) |
585 |
584
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) |
586 |
585 550
|
ffvelcdmd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( D ` ( ( i + 1 ) - j ) ) ` x ) e. CC ) |
587 |
551 586
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) e. CC ) |
588 |
524 587
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) e. CC ) |
589 |
|
1zzd |
|- ( i e. ( 0 ..^ N ) -> 1 e. ZZ ) |
590 |
234
|
peano2zd |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ZZ ) |
591 |
492
|
eqcomi |
|- 1 = ( 0 + 1 ) |
592 |
591
|
a1i |
|- ( i e. ( 0 ..^ N ) -> 1 = ( 0 + 1 ) ) |
593 |
173
|
a1i |
|- ( i e. ( 0 ..^ N ) -> 0 e. RR ) |
594 |
|
1red |
|- ( i e. ( 0 ..^ N ) -> 1 e. RR ) |
595 |
187
|
nn0ge0d |
|- ( i e. ( 0 ..^ N ) -> 0 <_ i ) |
596 |
593 215 594 595
|
leadd1dd |
|- ( i e. ( 0 ..^ N ) -> ( 0 + 1 ) <_ ( i + 1 ) ) |
597 |
592 596
|
eqbrtrd |
|- ( i e. ( 0 ..^ N ) -> 1 <_ ( i + 1 ) ) |
598 |
589 590 597
|
3jca |
|- ( i e. ( 0 ..^ N ) -> ( 1 e. ZZ /\ ( i + 1 ) e. ZZ /\ 1 <_ ( i + 1 ) ) ) |
599 |
|
eluz2 |
|- ( ( i + 1 ) e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ ( i + 1 ) e. ZZ /\ 1 <_ ( i + 1 ) ) ) |
600 |
598 599
|
sylibr |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ( ZZ>= ` 1 ) ) |
601 |
|
eluzfz2 |
|- ( ( i + 1 ) e. ( ZZ>= ` 1 ) -> ( i + 1 ) e. ( 1 ... ( i + 1 ) ) ) |
602 |
600 601
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ( 1 ... ( i + 1 ) ) ) |
603 |
602
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( i + 1 ) e. ( 1 ... ( i + 1 ) ) ) |
604 |
|
oveq1 |
|- ( j = ( i + 1 ) -> ( j - 1 ) = ( ( i + 1 ) - 1 ) ) |
605 |
604
|
oveq2d |
|- ( j = ( i + 1 ) -> ( i _C ( j - 1 ) ) = ( i _C ( ( i + 1 ) - 1 ) ) ) |
606 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( C ` j ) = ( C ` ( i + 1 ) ) ) |
607 |
606
|
fveq1d |
|- ( j = ( i + 1 ) -> ( ( C ` j ) ` x ) = ( ( C ` ( i + 1 ) ) ` x ) ) |
608 |
|
oveq2 |
|- ( j = ( i + 1 ) -> ( ( i + 1 ) - j ) = ( ( i + 1 ) - ( i + 1 ) ) ) |
609 |
608
|
fveq2d |
|- ( j = ( i + 1 ) -> ( D ` ( ( i + 1 ) - j ) ) = ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ) |
610 |
609
|
fveq1d |
|- ( j = ( i + 1 ) -> ( ( D ` ( ( i + 1 ) - j ) ) ` x ) = ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) |
611 |
607 610
|
oveq12d |
|- ( j = ( i + 1 ) -> ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) |
612 |
605 611
|
oveq12d |
|- ( j = ( i + 1 ) -> ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) ) |
613 |
514 515 516 588 603 612
|
fsumsplit1 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = ( ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) + sum_ j e. ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) ) |
614 |
|
1cnd |
|- ( i e. ( 0 ..^ N ) -> 1 e. CC ) |
615 |
503 614
|
pncand |
|- ( i e. ( 0 ..^ N ) -> ( ( i + 1 ) - 1 ) = i ) |
616 |
615
|
oveq2d |
|- ( i e. ( 0 ..^ N ) -> ( i _C ( ( i + 1 ) - 1 ) ) = ( i _C i ) ) |
617 |
|
bcnn |
|- ( i e. NN0 -> ( i _C i ) = 1 ) |
618 |
187 617
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( i _C i ) = 1 ) |
619 |
616 618
|
eqtrd |
|- ( i e. ( 0 ..^ N ) -> ( i _C ( ( i + 1 ) - 1 ) ) = 1 ) |
620 |
503 614
|
addcld |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. CC ) |
621 |
620
|
subidd |
|- ( i e. ( 0 ..^ N ) -> ( ( i + 1 ) - ( i + 1 ) ) = 0 ) |
622 |
621
|
fveq2d |
|- ( i e. ( 0 ..^ N ) -> ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) = ( D ` 0 ) ) |
623 |
622
|
fveq1d |
|- ( i e. ( 0 ..^ N ) -> ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) = ( ( D ` 0 ) ` x ) ) |
624 |
623
|
oveq2d |
|- ( i e. ( 0 ..^ N ) -> ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) |
625 |
619 624
|
oveq12d |
|- ( i e. ( 0 ..^ N ) -> ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) ) |
626 |
625
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) ) |
627 |
|
simpl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ph ) |
628 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ( 0 ... N ) ) |
629 |
628
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( i + 1 ) e. ( 0 ... N ) ) |
630 |
|
nfv |
|- F/ k ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) |
631 |
|
nfcv |
|- F/_ k ( i + 1 ) |
632 |
345 631
|
nffv |
|- F/_ k ( C ` ( i + 1 ) ) |
633 |
632 348 349
|
nff |
|- F/ k ( C ` ( i + 1 ) ) : X --> CC |
634 |
630 633
|
nfim |
|- F/ k ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( C ` ( i + 1 ) ) : X --> CC ) |
635 |
|
ovex |
|- ( i + 1 ) e. _V |
636 |
|
eleq1 |
|- ( k = ( i + 1 ) -> ( k e. ( 0 ... N ) <-> ( i + 1 ) e. ( 0 ... N ) ) ) |
637 |
636
|
anbi2d |
|- ( k = ( i + 1 ) -> ( ( ph /\ k e. ( 0 ... N ) ) <-> ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) ) ) |
638 |
|
fveq2 |
|- ( k = ( i + 1 ) -> ( C ` k ) = ( C ` ( i + 1 ) ) ) |
639 |
638
|
feq1d |
|- ( k = ( i + 1 ) -> ( ( C ` k ) : X --> CC <-> ( C ` ( i + 1 ) ) : X --> CC ) ) |
640 |
637 639
|
imbi12d |
|- ( k = ( i + 1 ) -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( C ` k ) : X --> CC ) <-> ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( C ` ( i + 1 ) ) : X --> CC ) ) ) |
641 |
634 635 640 229
|
vtoclf |
|- ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( C ` ( i + 1 ) ) : X --> CC ) |
642 |
627 629 641
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( C ` ( i + 1 ) ) : X --> CC ) |
643 |
642
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( C ` ( i + 1 ) ) ` x ) e. CC ) |
644 |
|
nfv |
|- F/ k ( ph /\ 0 e. ( 0 ... N ) ) |
645 |
|
nfcv |
|- F/_ k 0 |
646 |
459 645
|
nffv |
|- F/_ k ( D ` 0 ) |
647 |
646 348 349
|
nff |
|- F/ k ( D ` 0 ) : X --> CC |
648 |
644 647
|
nfim |
|- F/ k ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( D ` 0 ) : X --> CC ) |
649 |
|
c0ex |
|- 0 e. _V |
650 |
|
eleq1 |
|- ( k = 0 -> ( k e. ( 0 ... N ) <-> 0 e. ( 0 ... N ) ) ) |
651 |
650
|
anbi2d |
|- ( k = 0 -> ( ( ph /\ k e. ( 0 ... N ) ) <-> ( ph /\ 0 e. ( 0 ... N ) ) ) ) |
652 |
|
fveq2 |
|- ( k = 0 -> ( D ` k ) = ( D ` 0 ) ) |
653 |
652
|
feq1d |
|- ( k = 0 -> ( ( D ` k ) : X --> CC <-> ( D ` 0 ) : X --> CC ) ) |
654 |
651 653
|
imbi12d |
|- ( k = 0 -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) : X --> CC ) <-> ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( D ` 0 ) : X --> CC ) ) ) |
655 |
648 649 654 582
|
vtoclf |
|- ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( D ` 0 ) : X --> CC ) |
656 |
12 117 655
|
syl2anc |
|- ( ph -> ( D ` 0 ) : X --> CC ) |
657 |
656
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( D ` 0 ) : X --> CC ) |
658 |
657
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( D ` 0 ) ` x ) e. CC ) |
659 |
643 658
|
mulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) e. CC ) |
660 |
659
|
mullidd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) |
661 |
626 660
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) |
662 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
663 |
662
|
fveq2i |
|- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
664 |
13
|
eqcomi |
|- ( ZZ>= ` 0 ) = NN0 |
665 |
663 664
|
eqtr2i |
|- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
666 |
665
|
a1i |
|- ( i e. ( 0 ..^ N ) -> NN0 = ( ZZ>= ` ( 1 - 1 ) ) ) |
667 |
187 666
|
eleqtrd |
|- ( i e. ( 0 ..^ N ) -> i e. ( ZZ>= ` ( 1 - 1 ) ) ) |
668 |
|
fzdifsuc2 |
|- ( i e. ( ZZ>= ` ( 1 - 1 ) ) -> ( 1 ... i ) = ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ) |
669 |
667 668
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( 1 ... i ) = ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ) |
670 |
669
|
eqcomd |
|- ( i e. ( 0 ..^ N ) -> ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) = ( 1 ... i ) ) |
671 |
670
|
sumeq1d |
|- ( i e. ( 0 ..^ N ) -> sum_ j e. ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) |
672 |
671
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) |
673 |
661 672
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) + sum_ j e. ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) = ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) ) |
674 |
513 613 673
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) ) |
675 |
491 495 674
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) ) |
676 |
|
nfcv |
|- F/_ k ( i _C 0 ) |
677 |
345 645
|
nffv |
|- F/_ k ( C ` 0 ) |
678 |
677 456
|
nffv |
|- F/_ k ( ( C ` 0 ) ` x ) |
679 |
|
nfcv |
|- F/_ k ( ( i + 1 ) - 0 ) |
680 |
459 679
|
nffv |
|- F/_ k ( D ` ( ( i + 1 ) - 0 ) ) |
681 |
680 456
|
nffv |
|- F/_ k ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) |
682 |
678 453 681
|
nfov |
|- F/_ k ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) |
683 |
676 453 682
|
nfov |
|- F/_ k ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) |
684 |
664
|
a1i |
|- ( i e. ( 0 ..^ N ) -> ( ZZ>= ` 0 ) = NN0 ) |
685 |
187 684
|
eleqtrrd |
|- ( i e. ( 0 ..^ N ) -> i e. ( ZZ>= ` 0 ) ) |
686 |
|
eluzfz1 |
|- ( i e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... i ) ) |
687 |
685 686
|
syl |
|- ( i e. ( 0 ..^ N ) -> 0 e. ( 0 ... i ) ) |
688 |
687
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> 0 e. ( 0 ... i ) ) |
689 |
|
oveq2 |
|- ( k = 0 -> ( i _C k ) = ( i _C 0 ) ) |
690 |
110
|
fveq1d |
|- ( k = 0 -> ( ( C ` k ) ` x ) = ( ( C ` 0 ) ` x ) ) |
691 |
|
oveq2 |
|- ( k = 0 -> ( ( i + 1 ) - k ) = ( ( i + 1 ) - 0 ) ) |
692 |
691
|
fveq2d |
|- ( k = 0 -> ( D ` ( ( i + 1 ) - k ) ) = ( D ` ( ( i + 1 ) - 0 ) ) ) |
693 |
692
|
fveq1d |
|- ( k = 0 -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) = ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) |
694 |
690 693
|
oveq12d |
|- ( k = 0 -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) = ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) |
695 |
689 694
|
oveq12d |
|- ( k = 0 -> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) ) |
696 |
470 683 439 441 688 695
|
fsumsplit1 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
697 |
620
|
subid1d |
|- ( i e. ( 0 ..^ N ) -> ( ( i + 1 ) - 0 ) = ( i + 1 ) ) |
698 |
697
|
fveq2d |
|- ( i e. ( 0 ..^ N ) -> ( D ` ( ( i + 1 ) - 0 ) ) = ( D ` ( i + 1 ) ) ) |
699 |
698
|
fveq1d |
|- ( i e. ( 0 ..^ N ) -> ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) = ( ( D ` ( i + 1 ) ) ` x ) ) |
700 |
699
|
oveq2d |
|- ( i e. ( 0 ..^ N ) -> ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) = ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) |
701 |
700
|
oveq2d |
|- ( i e. ( 0 ..^ N ) -> ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) = ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) ) |
702 |
701
|
oveq1d |
|- ( i e. ( 0 ..^ N ) -> ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
703 |
702
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
704 |
|
bcn0 |
|- ( i e. NN0 -> ( i _C 0 ) = 1 ) |
705 |
187 704
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( i _C 0 ) = 1 ) |
706 |
705
|
oveq1d |
|- ( i e. ( 0 ..^ N ) -> ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) ) |
707 |
706
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) ) |
708 |
677 348 349
|
nff |
|- F/ k ( C ` 0 ) : X --> CC |
709 |
644 708
|
nfim |
|- F/ k ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( C ` 0 ) : X --> CC ) |
710 |
110
|
feq1d |
|- ( k = 0 -> ( ( C ` k ) : X --> CC <-> ( C ` 0 ) : X --> CC ) ) |
711 |
651 710
|
imbi12d |
|- ( k = 0 -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( C ` k ) : X --> CC ) <-> ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( C ` 0 ) : X --> CC ) ) ) |
712 |
709 649 711 229
|
vtoclf |
|- ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( C ` 0 ) : X --> CC ) |
713 |
12 117 712
|
syl2anc |
|- ( ph -> ( C ` 0 ) : X --> CC ) |
714 |
713
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( C ` 0 ) : X --> CC ) |
715 |
714
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( C ` 0 ) ` x ) e. CC ) |
716 |
459 631
|
nffv |
|- F/_ k ( D ` ( i + 1 ) ) |
717 |
716 348 349
|
nff |
|- F/ k ( D ` ( i + 1 ) ) : X --> CC |
718 |
630 717
|
nfim |
|- F/ k ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( D ` ( i + 1 ) ) : X --> CC ) |
719 |
|
fveq2 |
|- ( k = ( i + 1 ) -> ( D ` k ) = ( D ` ( i + 1 ) ) ) |
720 |
719
|
feq1d |
|- ( k = ( i + 1 ) -> ( ( D ` k ) : X --> CC <-> ( D ` ( i + 1 ) ) : X --> CC ) ) |
721 |
637 720
|
imbi12d |
|- ( k = ( i + 1 ) -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) : X --> CC ) <-> ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( D ` ( i + 1 ) ) : X --> CC ) ) ) |
722 |
718 635 721 582
|
vtoclf |
|- ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( D ` ( i + 1 ) ) : X --> CC ) |
723 |
627 629 722
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( D ` ( i + 1 ) ) : X --> CC ) |
724 |
723
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( D ` ( i + 1 ) ) ` x ) e. CC ) |
725 |
715 724
|
mulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) e. CC ) |
726 |
725
|
mullidd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) = ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) |
727 |
707 726
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) = ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) |
728 |
|
nfv |
|- F/ j i e. ( 0 ..^ N ) |
729 |
|
1zzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> 1 e. ZZ ) |
730 |
234
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> i e. ZZ ) |
731 |
|
eldifi |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j e. ( 0 ... i ) ) |
732 |
|
elfzelz |
|- ( j e. ( 0 ... i ) -> j e. ZZ ) |
733 |
731 732
|
syl |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j e. ZZ ) |
734 |
733
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> j e. ZZ ) |
735 |
|
elfznn0 |
|- ( j e. ( 0 ... i ) -> j e. NN0 ) |
736 |
731 735
|
syl |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j e. NN0 ) |
737 |
|
eldifsni |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j =/= 0 ) |
738 |
736 737
|
jca |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> ( j e. NN0 /\ j =/= 0 ) ) |
739 |
|
elnnne0 |
|- ( j e. NN <-> ( j e. NN0 /\ j =/= 0 ) ) |
740 |
738 739
|
sylibr |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j e. NN ) |
741 |
|
nnge1 |
|- ( j e. NN -> 1 <_ j ) |
742 |
740 741
|
syl |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> 1 <_ j ) |
743 |
742
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> 1 <_ j ) |
744 |
|
elfzle2 |
|- ( j e. ( 0 ... i ) -> j <_ i ) |
745 |
731 744
|
syl |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j <_ i ) |
746 |
745
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> j <_ i ) |
747 |
729 730 734 743 746
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> j e. ( 1 ... i ) ) |
748 |
747
|
ex |
|- ( i e. ( 0 ..^ N ) -> ( j e. ( ( 0 ... i ) \ { 0 } ) -> j e. ( 1 ... i ) ) ) |
749 |
|
0zd |
|- ( j e. ( 1 ... i ) -> 0 e. ZZ ) |
750 |
|
elfzel2 |
|- ( j e. ( 1 ... i ) -> i e. ZZ ) |
751 |
|
elfzelz |
|- ( j e. ( 1 ... i ) -> j e. ZZ ) |
752 |
173
|
a1i |
|- ( j e. ( 1 ... i ) -> 0 e. RR ) |
753 |
751
|
zred |
|- ( j e. ( 1 ... i ) -> j e. RR ) |
754 |
|
1red |
|- ( j e. ( 1 ... i ) -> 1 e. RR ) |
755 |
531
|
a1i |
|- ( j e. ( 1 ... i ) -> 0 < 1 ) |
756 |
|
elfzle1 |
|- ( j e. ( 1 ... i ) -> 1 <_ j ) |
757 |
752 754 753 755 756
|
ltletrd |
|- ( j e. ( 1 ... i ) -> 0 < j ) |
758 |
752 753 757
|
ltled |
|- ( j e. ( 1 ... i ) -> 0 <_ j ) |
759 |
|
elfzle2 |
|- ( j e. ( 1 ... i ) -> j <_ i ) |
760 |
749 750 751 758 759
|
elfzd |
|- ( j e. ( 1 ... i ) -> j e. ( 0 ... i ) ) |
761 |
752 757
|
gtned |
|- ( j e. ( 1 ... i ) -> j =/= 0 ) |
762 |
|
nelsn |
|- ( j =/= 0 -> -. j e. { 0 } ) |
763 |
761 762
|
syl |
|- ( j e. ( 1 ... i ) -> -. j e. { 0 } ) |
764 |
760 763
|
eldifd |
|- ( j e. ( 1 ... i ) -> j e. ( ( 0 ... i ) \ { 0 } ) ) |
765 |
764
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> j e. ( ( 0 ... i ) \ { 0 } ) ) |
766 |
765
|
ex |
|- ( i e. ( 0 ..^ N ) -> ( j e. ( 1 ... i ) -> j e. ( ( 0 ... i ) \ { 0 } ) ) ) |
767 |
748 766
|
impbid |
|- ( i e. ( 0 ..^ N ) -> ( j e. ( ( 0 ... i ) \ { 0 } ) <-> j e. ( 1 ... i ) ) ) |
768 |
728 767
|
alrimi |
|- ( i e. ( 0 ..^ N ) -> A. j ( j e. ( ( 0 ... i ) \ { 0 } ) <-> j e. ( 1 ... i ) ) ) |
769 |
|
dfcleq |
|- ( ( ( 0 ... i ) \ { 0 } ) = ( 1 ... i ) <-> A. j ( j e. ( ( 0 ... i ) \ { 0 } ) <-> j e. ( 1 ... i ) ) ) |
770 |
768 769
|
sylibr |
|- ( i e. ( 0 ..^ N ) -> ( ( 0 ... i ) \ { 0 } ) = ( 1 ... i ) ) |
771 |
770
|
sumeq1d |
|- ( i e. ( 0 ..^ N ) -> sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
772 |
771
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
773 |
727 772
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
774 |
696 703 773
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
775 |
675 774
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) + ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
776 |
|
fzfid |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 ... i ) e. Fin ) |
777 |
187
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> i e. NN0 ) |
778 |
765 733
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> j e. ZZ ) |
779 |
|
1zzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> 1 e. ZZ ) |
780 |
778 779
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> ( j - 1 ) e. ZZ ) |
781 |
777 780
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> ( i _C ( j - 1 ) ) e. NN0 ) |
782 |
781
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
783 |
782
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... i ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
784 |
783
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
785 |
|
simpl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) ) |
786 |
|
fzelp1 |
|- ( j e. ( 1 ... i ) -> j e. ( 1 ... ( i + 1 ) ) ) |
787 |
786
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> j e. ( 1 ... ( i + 1 ) ) ) |
788 |
785 787 551
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( ( C ` j ) ` x ) e. CC ) |
789 |
787 586
|
syldan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( ( D ` ( ( i + 1 ) - j ) ) ` x ) e. CC ) |
790 |
788 789
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) e. CC ) |
791 |
784 790
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) e. CC ) |
792 |
776 791
|
fsumcl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) e. CC ) |
793 |
187
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> i e. NN0 ) |
794 |
|
elfzelz |
|- ( k e. ( 1 ... i ) -> k e. ZZ ) |
795 |
794
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> k e. ZZ ) |
796 |
793 795
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( i _C k ) e. NN0 ) |
797 |
796
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( i _C k ) e. CC ) |
798 |
797
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 1 ... i ) ) -> ( i _C k ) e. CC ) |
799 |
798
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( i _C k ) e. CC ) |
800 |
|
simpll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ph /\ i e. ( 0 ..^ N ) ) ) |
801 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> x e. X ) |
802 |
760
|
ssriv |
|- ( 1 ... i ) C_ ( 0 ... i ) |
803 |
|
id |
|- ( k e. ( 1 ... i ) -> k e. ( 1 ... i ) ) |
804 |
802 803
|
sselid |
|- ( k e. ( 1 ... i ) -> k e. ( 0 ... i ) ) |
805 |
804
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> k e. ( 0 ... i ) ) |
806 |
800 801 805 433
|
syl21anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( C ` k ) ` x ) e. CC ) |
807 |
805 435
|
syldan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) |
808 |
806 807
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) e. CC ) |
809 |
799 808
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
810 |
776 809
|
fsumcl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
811 |
659 792 725 810
|
add4d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) + ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + ( sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
812 |
|
oveq1 |
|- ( j = k -> ( j - 1 ) = ( k - 1 ) ) |
813 |
812
|
oveq2d |
|- ( j = k -> ( i _C ( j - 1 ) ) = ( i _C ( k - 1 ) ) ) |
814 |
|
fveq2 |
|- ( j = k -> ( C ` j ) = ( C ` k ) ) |
815 |
814
|
fveq1d |
|- ( j = k -> ( ( C ` j ) ` x ) = ( ( C ` k ) ` x ) ) |
816 |
|
oveq2 |
|- ( j = k -> ( ( i + 1 ) - j ) = ( ( i + 1 ) - k ) ) |
817 |
816
|
fveq2d |
|- ( j = k -> ( D ` ( ( i + 1 ) - j ) ) = ( D ` ( ( i + 1 ) - k ) ) ) |
818 |
817
|
fveq1d |
|- ( j = k -> ( ( D ` ( ( i + 1 ) - j ) ) ` x ) = ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) |
819 |
815 818
|
oveq12d |
|- ( j = k -> ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
820 |
813 819
|
oveq12d |
|- ( j = k -> ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
821 |
|
nfcv |
|- F/_ k ( i _C ( j - 1 ) ) |
822 |
347 456
|
nffv |
|- F/_ k ( ( C ` j ) ` x ) |
823 |
569 456
|
nffv |
|- F/_ k ( ( D ` ( ( i + 1 ) - j ) ) ` x ) |
824 |
822 453 823
|
nfov |
|- F/_ k ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) |
825 |
821 453 824
|
nfov |
|- F/_ k ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) |
826 |
|
nfcv |
|- F/_ j ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
827 |
820 825 826
|
cbvsum |
|- sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = sum_ k e. ( 1 ... i ) ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
828 |
827
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = sum_ k e. ( 1 ... i ) ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
829 |
828
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( sum_ k e. ( 1 ... i ) ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
830 |
|
peano2zm |
|- ( k e. ZZ -> ( k - 1 ) e. ZZ ) |
831 |
795 830
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( k - 1 ) e. ZZ ) |
832 |
793 831
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( i _C ( k - 1 ) ) e. NN0 ) |
833 |
832
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( i _C ( k - 1 ) ) e. CC ) |
834 |
833
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 1 ... i ) ) -> ( i _C ( k - 1 ) ) e. CC ) |
835 |
834
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( i _C ( k - 1 ) ) e. CC ) |
836 |
835 808
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
837 |
776 836 809
|
fsumadd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 1 ... i ) ( ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( sum_ k e. ( 1 ... i ) ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
838 |
837
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( sum_ k e. ( 1 ... i ) ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 1 ... i ) ( ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
839 |
833 797
|
addcomd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( i _C ( k - 1 ) ) + ( i _C k ) ) = ( ( i _C k ) + ( i _C ( k - 1 ) ) ) ) |
840 |
|
bcpasc |
|- ( ( i e. NN0 /\ k e. ZZ ) -> ( ( i _C k ) + ( i _C ( k - 1 ) ) ) = ( ( i + 1 ) _C k ) ) |
841 |
793 795 840
|
syl2anc |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( i _C k ) + ( i _C ( k - 1 ) ) ) = ( ( i + 1 ) _C k ) ) |
842 |
839 841
|
eqtr2d |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( i + 1 ) _C k ) = ( ( i _C ( k - 1 ) ) + ( i _C k ) ) ) |
843 |
842
|
oveq1d |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i _C ( k - 1 ) ) + ( i _C k ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
844 |
843
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 1 ... i ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i _C ( k - 1 ) ) + ( i _C k ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
845 |
844
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i _C ( k - 1 ) ) + ( i _C k ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
846 |
835 799 808
|
adddird |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( ( i _C ( k - 1 ) ) + ( i _C k ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
847 |
845 846
|
eqtr2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
848 |
847
|
sumeq2dv |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 1 ... i ) ( ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
849 |
829 838 848
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
850 |
849
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + ( sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
851 |
|
peano2nn0 |
|- ( i e. NN0 -> ( i + 1 ) e. NN0 ) |
852 |
793 851
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( i + 1 ) e. NN0 ) |
853 |
852 795
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( i + 1 ) _C k ) e. NN0 ) |
854 |
853
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
855 |
854
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 1 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
856 |
855
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
857 |
856 808
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
858 |
776 857
|
fsumcl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
859 |
659 725 858
|
addassd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
860 |
187 851
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. NN0 ) |
861 |
|
bcn0 |
|- ( ( i + 1 ) e. NN0 -> ( ( i + 1 ) _C 0 ) = 1 ) |
862 |
860 861
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( ( i + 1 ) _C 0 ) = 1 ) |
863 |
862 700
|
oveq12d |
|- ( i e. ( 0 ..^ N ) -> ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) ) |
864 |
863
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) ) |
865 |
864 726
|
eqtr2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) = ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) ) |
866 |
770
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( 0 ... i ) \ { 0 } ) = ( 1 ... i ) ) |
867 |
866
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 ... i ) = ( ( 0 ... i ) \ { 0 } ) ) |
868 |
867
|
sumeq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
869 |
865 868
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
870 |
|
nfcv |
|- F/_ k ( ( i + 1 ) _C 0 ) |
871 |
870 453 682
|
nfov |
|- F/_ k ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) |
872 |
199 851
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i + 1 ) e. NN0 ) |
873 |
872 201
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) _C k ) e. NN0 ) |
874 |
873
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
875 |
874
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
876 |
875
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
877 |
876 436
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
878 |
|
oveq2 |
|- ( k = 0 -> ( ( i + 1 ) _C k ) = ( ( i + 1 ) _C 0 ) ) |
879 |
878 694
|
oveq12d |
|- ( k = 0 -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) ) |
880 |
470 871 439 877 688 879
|
fsumsplit1 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
881 |
880
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
882 |
869 881
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
883 |
882
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
884 |
|
bcnn |
|- ( ( i + 1 ) e. NN0 -> ( ( i + 1 ) _C ( i + 1 ) ) = 1 ) |
885 |
860 884
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( ( i + 1 ) _C ( i + 1 ) ) = 1 ) |
886 |
885
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( i + 1 ) _C ( i + 1 ) ) = 1 ) |
887 |
886
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) ) |
888 |
622
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) = ( D ` 0 ) ) |
889 |
888
|
feq1d |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) : X --> CC <-> ( D ` 0 ) : X --> CC ) ) |
890 |
657 889
|
mpbird |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) : X --> CC ) |
891 |
890
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) : X --> CC ) |
892 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> x e. X ) |
893 |
891 892
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) e. CC ) |
894 |
643 893
|
mulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) e. CC ) |
895 |
894
|
mullidd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) |
896 |
624
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) |
897 |
887 895 896
|
3eqtrrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) = ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) ) |
898 |
|
fzdifsuc |
|- ( i e. ( ZZ>= ` 0 ) -> ( 0 ... i ) = ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ) |
899 |
685 898
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( 0 ... i ) = ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ) |
900 |
899
|
sumeq1d |
|- ( i e. ( 0 ..^ N ) -> sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = sum_ k e. ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
901 |
900
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = sum_ k e. ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
902 |
897 901
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
903 |
|
nfcv |
|- F/_ k ( ( i + 1 ) _C ( i + 1 ) ) |
904 |
632 456
|
nffv |
|- F/_ k ( ( C ` ( i + 1 ) ) ` x ) |
905 |
|
nfcv |
|- F/_ k ( ( i + 1 ) - ( i + 1 ) ) |
906 |
459 905
|
nffv |
|- F/_ k ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) |
907 |
906 456
|
nffv |
|- F/_ k ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) |
908 |
904 453 907
|
nfov |
|- F/_ k ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) |
909 |
903 453 908
|
nfov |
|- F/_ k ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) |
910 |
|
fzfid |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 0 ... ( i + 1 ) ) e. Fin ) |
911 |
860
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( i + 1 ) e. NN0 ) |
912 |
|
elfzelz |
|- ( k e. ( 0 ... ( i + 1 ) ) -> k e. ZZ ) |
913 |
912
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k e. ZZ ) |
914 |
911 913
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) _C k ) e. NN0 ) |
915 |
914
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
916 |
915
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
917 |
916
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
918 |
627
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ph ) |
919 |
96
|
a1i |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> 0 e. ZZ ) |
920 |
208
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> N e. ZZ ) |
921 |
|
elfzle1 |
|- ( k e. ( 0 ... ( i + 1 ) ) -> 0 <_ k ) |
922 |
921
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> 0 <_ k ) |
923 |
913
|
zred |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k e. RR ) |
924 |
911
|
nn0red |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( i + 1 ) e. RR ) |
925 |
213
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> N e. RR ) |
926 |
|
elfzle2 |
|- ( k e. ( 0 ... ( i + 1 ) ) -> k <_ ( i + 1 ) ) |
927 |
926
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k <_ ( i + 1 ) ) |
928 |
301
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( i + 1 ) <_ N ) |
929 |
923 924 925 927 928
|
letrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k <_ N ) |
930 |
919 920 913 922 929
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k e. ( 0 ... N ) ) |
931 |
930
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k e. ( 0 ... N ) ) |
932 |
918 931 229
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( C ` k ) : X --> CC ) |
933 |
932
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( C ` k ) : X --> CC ) |
934 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> x e. X ) |
935 |
933 934
|
ffvelcdmd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( C ` k ) ` x ) e. CC ) |
936 |
918
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ph ) |
937 |
590
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( i + 1 ) e. ZZ ) |
938 |
937 913
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) e. ZZ ) |
939 |
924 923
|
subge0d |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( 0 <_ ( ( i + 1 ) - k ) <-> k <_ ( i + 1 ) ) ) |
940 |
927 939
|
mpbird |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> 0 <_ ( ( i + 1 ) - k ) ) |
941 |
924 923
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) e. RR ) |
942 |
925 923
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( N - k ) e. RR ) |
943 |
925 173 247
|
sylancl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( N - 0 ) e. RR ) |
944 |
924 925 923 928
|
lesub1dd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) <_ ( N - k ) ) |
945 |
173
|
a1i |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> 0 e. RR ) |
946 |
945 923 925 922
|
lesub2dd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( N - k ) <_ ( N - 0 ) ) |
947 |
941 942 943 944 946
|
letrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) <_ ( N - 0 ) ) |
948 |
253
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( N - 0 ) = N ) |
949 |
947 948
|
breqtrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) <_ N ) |
950 |
919 920 938 940 949
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) |
951 |
950
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) |
952 |
951
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) |
953 |
|
fveq2 |
|- ( j = ( ( i + 1 ) - k ) -> ( D ` j ) = ( D ` ( ( i + 1 ) - k ) ) ) |
954 |
953
|
feq1d |
|- ( j = ( ( i + 1 ) - k ) -> ( ( D ` j ) : X --> CC <-> ( D ` ( ( i + 1 ) - k ) ) : X --> CC ) ) |
955 |
310 954
|
imbi12d |
|- ( j = ( ( i + 1 ) - k ) -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> ( D ` j ) : X --> CC ) <-> ( ( ph /\ ( ( i + 1 ) - k ) e. ( 0 ... N ) ) -> ( D ` ( ( i + 1 ) - k ) ) : X --> CC ) ) ) |
956 |
459 346
|
nffv |
|- F/_ k ( D ` j ) |
957 |
956 348 349
|
nff |
|- F/ k ( D ` j ) : X --> CC |
958 |
343 957
|
nfim |
|- F/ k ( ( ph /\ j e. ( 0 ... N ) ) -> ( D ` j ) : X --> CC ) |
959 |
|
fveq2 |
|- ( k = j -> ( D ` k ) = ( D ` j ) ) |
960 |
959
|
feq1d |
|- ( k = j -> ( ( D ` k ) : X --> CC <-> ( D ` j ) : X --> CC ) ) |
961 |
267 960
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) : X --> CC ) <-> ( ( ph /\ j e. ( 0 ... N ) ) -> ( D ` j ) : X --> CC ) ) ) |
962 |
958 961 582
|
chvarfv |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( D ` j ) : X --> CC ) |
963 |
308 955 962
|
vtocl |
|- ( ( ph /\ ( ( i + 1 ) - k ) e. ( 0 ... N ) ) -> ( D ` ( ( i + 1 ) - k ) ) : X --> CC ) |
964 |
936 952 963
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( D ` ( ( i + 1 ) - k ) ) : X --> CC ) |
965 |
964 934
|
ffvelcdmd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) |
966 |
935 965
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) e. CC ) |
967 |
917 966
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
968 |
860 684
|
eleqtrrd |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ( ZZ>= ` 0 ) ) |
969 |
|
eluzfz2 |
|- ( ( i + 1 ) e. ( ZZ>= ` 0 ) -> ( i + 1 ) e. ( 0 ... ( i + 1 ) ) ) |
970 |
968 969
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ( 0 ... ( i + 1 ) ) ) |
971 |
970
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( i + 1 ) e. ( 0 ... ( i + 1 ) ) ) |
972 |
|
oveq2 |
|- ( k = ( i + 1 ) -> ( ( i + 1 ) _C k ) = ( ( i + 1 ) _C ( i + 1 ) ) ) |
973 |
638
|
fveq1d |
|- ( k = ( i + 1 ) -> ( ( C ` k ) ` x ) = ( ( C ` ( i + 1 ) ) ` x ) ) |
974 |
|
oveq2 |
|- ( k = ( i + 1 ) -> ( ( i + 1 ) - k ) = ( ( i + 1 ) - ( i + 1 ) ) ) |
975 |
974
|
fveq2d |
|- ( k = ( i + 1 ) -> ( D ` ( ( i + 1 ) - k ) ) = ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ) |
976 |
975
|
fveq1d |
|- ( k = ( i + 1 ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) = ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) |
977 |
973 976
|
oveq12d |
|- ( k = ( i + 1 ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) |
978 |
972 977
|
oveq12d |
|- ( k = ( i + 1 ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) ) |
979 |
470 909 910 967 971 978
|
fsumsplit1 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
980 |
979
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
981 |
883 902 980
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
982 |
850 859 981
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + ( sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
983 |
775 811 982
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
984 |
438 442 983
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
985 |
984
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
986 |
422 985
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( S _D ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
987 |
986
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( S _D ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
988 |
191 193 987
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
989 |
180 181 184 988
|
syl21anc |
|- ( ( i e. ( 0 ..^ N ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
990 |
989
|
3exp |
|- ( i e. ( 0 ..^ N ) -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) ) |
991 |
44 57 70 83 179 990
|
fzind2 |
|- ( n e. ( 0 ... N ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) ) |
992 |
31 991
|
vtoclg |
|- ( N e. NN0 -> ( N e. ( 0 ... N ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) ) ) |
993 |
5 16 992
|
sylc |
|- ( ph -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) ) |
994 |
12 993
|
mpd |
|- ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) |