| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> N e. NN0 ) |
| 2 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 3 |
1 2
|
eleqtrdi |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) |
| 4 |
|
seqp1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` ( N + 1 ) ) = ( ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ( ( x e. _V |-> ( S _D x ) ) o. 1st ) ( ( NN0 X. { F } ) ` ( N + 1 ) ) ) ) |
| 5 |
3 4
|
syl |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` ( N + 1 ) ) = ( ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ( ( x e. _V |-> ( S _D x ) ) o. 1st ) ( ( NN0 X. { F } ) ` ( N + 1 ) ) ) ) |
| 6 |
|
fvex |
|- ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) e. _V |
| 7 |
|
fvex |
|- ( ( NN0 X. { F } ) ` ( N + 1 ) ) e. _V |
| 8 |
6 7
|
opco1i |
|- ( ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ( ( x e. _V |-> ( S _D x ) ) o. 1st ) ( ( NN0 X. { F } ) ` ( N + 1 ) ) ) = ( ( x e. _V |-> ( S _D x ) ) ` ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ) |
| 9 |
5 8
|
eqtrdi |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` ( N + 1 ) ) = ( ( x e. _V |-> ( S _D x ) ) ` ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ) ) |
| 10 |
|
eqid |
|- ( x e. _V |-> ( S _D x ) ) = ( x e. _V |-> ( S _D x ) ) |
| 11 |
10
|
dvnfval |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) |
| 12 |
11
|
3adant3 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) |
| 13 |
12
|
fveq1d |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` ( N + 1 ) ) = ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` ( N + 1 ) ) ) |
| 14 |
|
fvex |
|- ( ( S Dn F ) ` N ) e. _V |
| 15 |
|
oveq2 |
|- ( x = ( ( S Dn F ) ` N ) -> ( S _D x ) = ( S _D ( ( S Dn F ) ` N ) ) ) |
| 16 |
|
ovex |
|- ( S _D ( ( S Dn F ) ` N ) ) e. _V |
| 17 |
15 10 16
|
fvmpt |
|- ( ( ( S Dn F ) ` N ) e. _V -> ( ( x e. _V |-> ( S _D x ) ) ` ( ( S Dn F ) ` N ) ) = ( S _D ( ( S Dn F ) ` N ) ) ) |
| 18 |
14 17
|
ax-mp |
|- ( ( x e. _V |-> ( S _D x ) ) ` ( ( S Dn F ) ` N ) ) = ( S _D ( ( S Dn F ) ` N ) ) |
| 19 |
12
|
fveq1d |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` N ) = ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ) |
| 20 |
19
|
fveq2d |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( x e. _V |-> ( S _D x ) ) ` ( ( S Dn F ) ` N ) ) = ( ( x e. _V |-> ( S _D x ) ) ` ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ) ) |
| 21 |
18 20
|
eqtr3id |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( S _D ( ( S Dn F ) ` N ) ) = ( ( x e. _V |-> ( S _D x ) ) ` ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ) ) |
| 22 |
9 13 21
|
3eqtr4d |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` ( N + 1 ) ) = ( S _D ( ( S Dn F ) ` N ) ) ) |