| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyssc |  |-  ( Poly ` S ) C_ ( Poly ` CC ) | 
						
							| 2 | 1 | sseli |  |-  ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) | 
						
							| 3 |  | cnring |  |-  CCfld e. Ring | 
						
							| 4 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 5 | 4 | subrgid |  |-  ( CCfld e. Ring -> CC e. ( SubRing ` CCfld ) ) | 
						
							| 6 | 3 5 | ax-mp |  |-  CC e. ( SubRing ` CCfld ) | 
						
							| 7 |  | dvnply2 |  |-  ( ( CC e. ( SubRing ` CCfld ) /\ F e. ( Poly ` CC ) /\ N e. NN0 ) -> ( ( CC Dn F ) ` N ) e. ( Poly ` CC ) ) | 
						
							| 8 | 6 7 | mp3an1 |  |-  ( ( F e. ( Poly ` CC ) /\ N e. NN0 ) -> ( ( CC Dn F ) ` N ) e. ( Poly ` CC ) ) | 
						
							| 9 | 2 8 | sylan |  |-  ( ( F e. ( Poly ` S ) /\ N e. NN0 ) -> ( ( CC Dn F ) ` N ) e. ( Poly ` CC ) ) |