| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvntaylp0.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvntaylp0.f |
|- ( ph -> F : A --> CC ) |
| 3 |
|
dvntaylp0.a |
|- ( ph -> A C_ S ) |
| 4 |
|
dvntaylp0.m |
|- ( ph -> M e. ( 0 ... N ) ) |
| 5 |
|
dvntaylp0.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` N ) ) |
| 6 |
|
dvntaylp0.t |
|- T = ( N ( S Tayl F ) B ) |
| 7 |
|
elfz3nn0 |
|- ( M e. ( 0 ... N ) -> N e. NN0 ) |
| 8 |
4 7
|
syl |
|- ( ph -> N e. NN0 ) |
| 9 |
8
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 10 |
|
elfznn0 |
|- ( M e. ( 0 ... N ) -> M e. NN0 ) |
| 11 |
4 10
|
syl |
|- ( ph -> M e. NN0 ) |
| 12 |
11
|
nn0cnd |
|- ( ph -> M e. CC ) |
| 13 |
9 12
|
npcand |
|- ( ph -> ( ( N - M ) + M ) = N ) |
| 14 |
13
|
oveq1d |
|- ( ph -> ( ( ( N - M ) + M ) ( S Tayl F ) B ) = ( N ( S Tayl F ) B ) ) |
| 15 |
14 6
|
eqtr4di |
|- ( ph -> ( ( ( N - M ) + M ) ( S Tayl F ) B ) = T ) |
| 16 |
15
|
oveq2d |
|- ( ph -> ( CC Dn ( ( ( N - M ) + M ) ( S Tayl F ) B ) ) = ( CC Dn T ) ) |
| 17 |
16
|
fveq1d |
|- ( ph -> ( ( CC Dn ( ( ( N - M ) + M ) ( S Tayl F ) B ) ) ` M ) = ( ( CC Dn T ) ` M ) ) |
| 18 |
|
fznn0sub |
|- ( M e. ( 0 ... N ) -> ( N - M ) e. NN0 ) |
| 19 |
4 18
|
syl |
|- ( ph -> ( N - M ) e. NN0 ) |
| 20 |
13
|
fveq2d |
|- ( ph -> ( ( S Dn F ) ` ( ( N - M ) + M ) ) = ( ( S Dn F ) ` N ) ) |
| 21 |
20
|
dmeqd |
|- ( ph -> dom ( ( S Dn F ) ` ( ( N - M ) + M ) ) = dom ( ( S Dn F ) ` N ) ) |
| 22 |
5 21
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn F ) ` ( ( N - M ) + M ) ) ) |
| 23 |
1 2 3 11 19 22
|
dvntaylp |
|- ( ph -> ( ( CC Dn ( ( ( N - M ) + M ) ( S Tayl F ) B ) ) ` M ) = ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) |
| 24 |
17 23
|
eqtr3d |
|- ( ph -> ( ( CC Dn T ) ` M ) = ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) |
| 25 |
24
|
fveq1d |
|- ( ph -> ( ( ( CC Dn T ) ` M ) ` B ) = ( ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ` B ) ) |
| 26 |
|
cnex |
|- CC e. _V |
| 27 |
26
|
a1i |
|- ( ph -> CC e. _V ) |
| 28 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
| 29 |
27 1 2 3 28
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
| 30 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. NN0 ) -> ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC ) |
| 31 |
1 29 11 30
|
syl3anc |
|- ( ph -> ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC ) |
| 32 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. NN0 ) -> dom ( ( S Dn F ) ` M ) C_ dom F ) |
| 33 |
1 29 11 32
|
syl3anc |
|- ( ph -> dom ( ( S Dn F ) ` M ) C_ dom F ) |
| 34 |
2 33
|
fssdmd |
|- ( ph -> dom ( ( S Dn F ) ` M ) C_ A ) |
| 35 |
34 3
|
sstrd |
|- ( ph -> dom ( ( S Dn F ) ` M ) C_ S ) |
| 36 |
19
|
orcd |
|- ( ph -> ( ( N - M ) e. NN0 \/ ( N - M ) = +oo ) ) |
| 37 |
|
dvnadd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( M e. NN0 /\ ( N - M ) e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` ( M + ( N - M ) ) ) ) |
| 38 |
1 29 11 19 37
|
syl22anc |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` ( M + ( N - M ) ) ) ) |
| 39 |
12 9
|
pncan3d |
|- ( ph -> ( M + ( N - M ) ) = N ) |
| 40 |
39
|
fveq2d |
|- ( ph -> ( ( S Dn F ) ` ( M + ( N - M ) ) ) = ( ( S Dn F ) ` N ) ) |
| 41 |
38 40
|
eqtrd |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` N ) ) |
| 42 |
41
|
dmeqd |
|- ( ph -> dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = dom ( ( S Dn F ) ` N ) ) |
| 43 |
5 42
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) ) |
| 44 |
1 31 35 19 43
|
taylplem1 |
|- ( ( ph /\ k e. ( ( 0 [,] ( N - M ) ) i^i ZZ ) ) -> B e. dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) |
| 45 |
|
eqid |
|- ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) = ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) |
| 46 |
1 31 35 36 44 45
|
tayl0 |
|- ( ph -> ( B e. dom ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) /\ ( ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ` B ) = ( ( ( S Dn F ) ` M ) ` B ) ) ) |
| 47 |
46
|
simprd |
|- ( ph -> ( ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ` B ) = ( ( ( S Dn F ) ` M ) ` B ) ) |
| 48 |
25 47
|
eqtrd |
|- ( ph -> ( ( ( CC Dn T ) ` M ) ` B ) = ( ( ( S Dn F ) ` M ) ` B ) ) |