Step |
Hyp |
Ref |
Expression |
1 |
|
dvntaylp0.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvntaylp0.f |
|- ( ph -> F : A --> CC ) |
3 |
|
dvntaylp0.a |
|- ( ph -> A C_ S ) |
4 |
|
dvntaylp0.m |
|- ( ph -> M e. ( 0 ... N ) ) |
5 |
|
dvntaylp0.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` N ) ) |
6 |
|
dvntaylp0.t |
|- T = ( N ( S Tayl F ) B ) |
7 |
|
elfz3nn0 |
|- ( M e. ( 0 ... N ) -> N e. NN0 ) |
8 |
4 7
|
syl |
|- ( ph -> N e. NN0 ) |
9 |
8
|
nn0cnd |
|- ( ph -> N e. CC ) |
10 |
|
elfznn0 |
|- ( M e. ( 0 ... N ) -> M e. NN0 ) |
11 |
4 10
|
syl |
|- ( ph -> M e. NN0 ) |
12 |
11
|
nn0cnd |
|- ( ph -> M e. CC ) |
13 |
9 12
|
npcand |
|- ( ph -> ( ( N - M ) + M ) = N ) |
14 |
13
|
oveq1d |
|- ( ph -> ( ( ( N - M ) + M ) ( S Tayl F ) B ) = ( N ( S Tayl F ) B ) ) |
15 |
14 6
|
eqtr4di |
|- ( ph -> ( ( ( N - M ) + M ) ( S Tayl F ) B ) = T ) |
16 |
15
|
oveq2d |
|- ( ph -> ( CC Dn ( ( ( N - M ) + M ) ( S Tayl F ) B ) ) = ( CC Dn T ) ) |
17 |
16
|
fveq1d |
|- ( ph -> ( ( CC Dn ( ( ( N - M ) + M ) ( S Tayl F ) B ) ) ` M ) = ( ( CC Dn T ) ` M ) ) |
18 |
|
fznn0sub |
|- ( M e. ( 0 ... N ) -> ( N - M ) e. NN0 ) |
19 |
4 18
|
syl |
|- ( ph -> ( N - M ) e. NN0 ) |
20 |
13
|
fveq2d |
|- ( ph -> ( ( S Dn F ) ` ( ( N - M ) + M ) ) = ( ( S Dn F ) ` N ) ) |
21 |
20
|
dmeqd |
|- ( ph -> dom ( ( S Dn F ) ` ( ( N - M ) + M ) ) = dom ( ( S Dn F ) ` N ) ) |
22 |
5 21
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn F ) ` ( ( N - M ) + M ) ) ) |
23 |
1 2 3 11 19 22
|
dvntaylp |
|- ( ph -> ( ( CC Dn ( ( ( N - M ) + M ) ( S Tayl F ) B ) ) ` M ) = ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) |
24 |
17 23
|
eqtr3d |
|- ( ph -> ( ( CC Dn T ) ` M ) = ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) |
25 |
24
|
fveq1d |
|- ( ph -> ( ( ( CC Dn T ) ` M ) ` B ) = ( ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ` B ) ) |
26 |
|
cnex |
|- CC e. _V |
27 |
26
|
a1i |
|- ( ph -> CC e. _V ) |
28 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
29 |
27 1 2 3 28
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
30 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. NN0 ) -> ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC ) |
31 |
1 29 11 30
|
syl3anc |
|- ( ph -> ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC ) |
32 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. NN0 ) -> dom ( ( S Dn F ) ` M ) C_ dom F ) |
33 |
1 29 11 32
|
syl3anc |
|- ( ph -> dom ( ( S Dn F ) ` M ) C_ dom F ) |
34 |
2 33
|
fssdmd |
|- ( ph -> dom ( ( S Dn F ) ` M ) C_ A ) |
35 |
34 3
|
sstrd |
|- ( ph -> dom ( ( S Dn F ) ` M ) C_ S ) |
36 |
19
|
orcd |
|- ( ph -> ( ( N - M ) e. NN0 \/ ( N - M ) = +oo ) ) |
37 |
|
dvnadd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( M e. NN0 /\ ( N - M ) e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` ( M + ( N - M ) ) ) ) |
38 |
1 29 11 19 37
|
syl22anc |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` ( M + ( N - M ) ) ) ) |
39 |
12 9
|
pncan3d |
|- ( ph -> ( M + ( N - M ) ) = N ) |
40 |
39
|
fveq2d |
|- ( ph -> ( ( S Dn F ) ` ( M + ( N - M ) ) ) = ( ( S Dn F ) ` N ) ) |
41 |
38 40
|
eqtrd |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` N ) ) |
42 |
41
|
dmeqd |
|- ( ph -> dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = dom ( ( S Dn F ) ` N ) ) |
43 |
5 42
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) ) |
44 |
1 31 35 19 43
|
taylplem1 |
|- ( ( ph /\ k e. ( ( 0 [,] ( N - M ) ) i^i ZZ ) ) -> B e. dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) |
45 |
|
eqid |
|- ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) = ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) |
46 |
1 31 35 36 44 45
|
tayl0 |
|- ( ph -> ( B e. dom ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) /\ ( ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ` B ) = ( ( ( S Dn F ) ` M ) ` B ) ) ) |
47 |
46
|
simprd |
|- ( ph -> ( ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ` B ) = ( ( ( S Dn F ) ` M ) ` B ) ) |
48 |
25 47
|
eqtrd |
|- ( ph -> ( ( ( CC Dn T ) ` M ) ` B ) = ( ( ( S Dn F ) ` M ) ` B ) ) |