| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvply1.f |  |-  ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 2 |  | dvply1.g |  |-  ( ph -> G = ( z e. CC |-> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( B ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 3 |  | dvply1.a |  |-  ( ph -> A : NN0 --> CC ) | 
						
							| 4 |  | dvply1.b |  |-  B = ( k e. NN0 |-> ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) ) | 
						
							| 5 |  | dvply1.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 6 | 1 | oveq2d |  |-  ( ph -> ( CC _D F ) = ( CC _D ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) ) | 
						
							| 7 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 8 | 7 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 9 | 8 | toponrestid |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 10 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 11 | 10 | a1i |  |-  ( ph -> CC e. { RR , CC } ) | 
						
							| 12 | 7 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 13 |  | unicntop |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 14 | 13 | topopn |  |-  ( ( TopOpen ` CCfld ) e. Top -> CC e. ( TopOpen ` CCfld ) ) | 
						
							| 15 | 12 14 | mp1i |  |-  ( ph -> CC e. ( TopOpen ` CCfld ) ) | 
						
							| 16 |  | fzfid |  |-  ( ph -> ( 0 ... N ) e. Fin ) | 
						
							| 17 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 18 |  | ffvelcdm |  |-  ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) | 
						
							| 19 | 3 17 18 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ z e. CC ) -> ( A ` k ) e. CC ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ z e. CC ) -> z e. CC ) | 
						
							| 22 | 17 | ad2antlr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ z e. CC ) -> k e. NN0 ) | 
						
							| 23 | 21 22 | expcld |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ z e. CC ) -> ( z ^ k ) e. CC ) | 
						
							| 24 | 20 23 | mulcld |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ z e. CC ) -> ( ( A ` k ) x. ( z ^ k ) ) e. CC ) | 
						
							| 25 | 24 | 3impa |  |-  ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) -> ( ( A ` k ) x. ( z ^ k ) ) e. CC ) | 
						
							| 26 | 19 | 3adant3 |  |-  ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) -> ( A ` k ) e. CC ) | 
						
							| 27 |  | 0cnd |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ k = 0 ) -> 0 e. CC ) | 
						
							| 28 |  | simpl2 |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ -. k = 0 ) -> k e. ( 0 ... N ) ) | 
						
							| 29 | 28 17 | syl |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ -. k = 0 ) -> k e. NN0 ) | 
						
							| 30 | 29 | nn0cnd |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ -. k = 0 ) -> k e. CC ) | 
						
							| 31 |  | simpl3 |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ -. k = 0 ) -> z e. CC ) | 
						
							| 32 |  | simpr |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ -. k = 0 ) -> -. k = 0 ) | 
						
							| 33 |  | elnn0 |  |-  ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) | 
						
							| 34 | 29 33 | sylib |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ -. k = 0 ) -> ( k e. NN \/ k = 0 ) ) | 
						
							| 35 |  | orel2 |  |-  ( -. k = 0 -> ( ( k e. NN \/ k = 0 ) -> k e. NN ) ) | 
						
							| 36 | 32 34 35 | sylc |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ -. k = 0 ) -> k e. NN ) | 
						
							| 37 |  | nnm1nn0 |  |-  ( k e. NN -> ( k - 1 ) e. NN0 ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ -. k = 0 ) -> ( k - 1 ) e. NN0 ) | 
						
							| 39 | 31 38 | expcld |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ -. k = 0 ) -> ( z ^ ( k - 1 ) ) e. CC ) | 
						
							| 40 | 30 39 | mulcld |  |-  ( ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) /\ -. k = 0 ) -> ( k x. ( z ^ ( k - 1 ) ) ) e. CC ) | 
						
							| 41 | 27 40 | ifclda |  |-  ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) -> if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) e. CC ) | 
						
							| 42 | 26 41 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... N ) /\ z e. CC ) -> ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) e. CC ) | 
						
							| 43 | 10 | a1i |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> CC e. { RR , CC } ) | 
						
							| 44 |  | c0ex |  |-  0 e. _V | 
						
							| 45 |  | ovex |  |-  ( k x. ( z ^ ( k - 1 ) ) ) e. _V | 
						
							| 46 | 44 45 | ifex |  |-  if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) e. _V | 
						
							| 47 | 46 | a1i |  |-  ( ( ( ph /\ k e. ( 0 ... N ) ) /\ z e. CC ) -> if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) e. _V ) | 
						
							| 48 | 17 | adantl |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) | 
						
							| 49 |  | dvexp2 |  |-  ( k e. NN0 -> ( CC _D ( z e. CC |-> ( z ^ k ) ) ) = ( z e. CC |-> if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( CC _D ( z e. CC |-> ( z ^ k ) ) ) = ( z e. CC |-> if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 51 | 43 23 47 50 19 | dvmptcmul |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( CC _D ( z e. CC |-> ( ( A ` k ) x. ( z ^ k ) ) ) ) = ( z e. CC |-> ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) ) ) | 
						
							| 52 | 9 7 11 15 16 25 42 51 | dvmptfsum |  |-  ( ph -> ( CC _D ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) ) ) | 
						
							| 53 |  | elfznn |  |-  ( k e. ( 1 ... N ) -> k e. NN ) | 
						
							| 54 | 53 | nnne0d |  |-  ( k e. ( 1 ... N ) -> k =/= 0 ) | 
						
							| 55 | 54 | neneqd |  |-  ( k e. ( 1 ... N ) -> -. k = 0 ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> -. k = 0 ) | 
						
							| 57 | 56 | iffalsed |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) = ( k x. ( z ^ ( k - 1 ) ) ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) = ( ( A ` k ) x. ( k x. ( z ^ ( k - 1 ) ) ) ) ) | 
						
							| 59 | 58 | sumeq2dv |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 1 ... N ) ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( 1 ... N ) ( ( A ` k ) x. ( k x. ( z ^ ( k - 1 ) ) ) ) ) | 
						
							| 60 |  | 1eluzge0 |  |-  1 e. ( ZZ>= ` 0 ) | 
						
							| 61 |  | fzss1 |  |-  ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... N ) C_ ( 0 ... N ) ) | 
						
							| 62 | 60 61 | mp1i |  |-  ( ( ph /\ z e. CC ) -> ( 1 ... N ) C_ ( 0 ... N ) ) | 
						
							| 63 | 3 | adantr |  |-  ( ( ph /\ z e. CC ) -> A : NN0 --> CC ) | 
						
							| 64 | 53 | nnnn0d |  |-  ( k e. ( 1 ... N ) -> k e. NN0 ) | 
						
							| 65 | 63 64 18 | syl2an |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> ( A ` k ) e. CC ) | 
						
							| 66 | 54 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> k =/= 0 ) | 
						
							| 67 | 66 | neneqd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> -. k = 0 ) | 
						
							| 68 | 67 | iffalsed |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) = ( k x. ( z ^ ( k - 1 ) ) ) ) | 
						
							| 69 | 64 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> k e. NN0 ) | 
						
							| 70 | 69 | nn0cnd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> k e. CC ) | 
						
							| 71 |  | simplr |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> z e. CC ) | 
						
							| 72 | 53 37 | syl |  |-  ( k e. ( 1 ... N ) -> ( k - 1 ) e. NN0 ) | 
						
							| 73 | 72 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> ( k - 1 ) e. NN0 ) | 
						
							| 74 | 71 73 | expcld |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> ( z ^ ( k - 1 ) ) e. CC ) | 
						
							| 75 | 70 74 | mulcld |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> ( k x. ( z ^ ( k - 1 ) ) ) e. CC ) | 
						
							| 76 | 68 75 | eqeltrd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) e. CC ) | 
						
							| 77 | 65 76 | mulcld |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) e. CC ) | 
						
							| 78 |  | eldifn |  |-  ( k e. ( ( 0 ... N ) \ ( 1 ... N ) ) -> -. k e. ( 1 ... N ) ) | 
						
							| 79 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 80 | 79 | oveq1i |  |-  ( ( 0 + 1 ) ... N ) = ( 1 ... N ) | 
						
							| 81 | 80 | eleq2i |  |-  ( k e. ( ( 0 + 1 ) ... N ) <-> k e. ( 1 ... N ) ) | 
						
							| 82 | 78 81 | sylnibr |  |-  ( k e. ( ( 0 ... N ) \ ( 1 ... N ) ) -> -. k e. ( ( 0 + 1 ) ... N ) ) | 
						
							| 83 | 82 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( 1 ... N ) ) ) -> -. k e. ( ( 0 + 1 ) ... N ) ) | 
						
							| 84 |  | eldifi |  |-  ( k e. ( ( 0 ... N ) \ ( 1 ... N ) ) -> k e. ( 0 ... N ) ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( 1 ... N ) ) ) -> k e. ( 0 ... N ) ) | 
						
							| 86 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 87 | 5 86 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 88 | 87 | ad2antrr |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( 1 ... N ) ) ) -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 89 |  | elfzp12 |  |-  ( N e. ( ZZ>= ` 0 ) -> ( k e. ( 0 ... N ) <-> ( k = 0 \/ k e. ( ( 0 + 1 ) ... N ) ) ) ) | 
						
							| 90 | 88 89 | syl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( 1 ... N ) ) ) -> ( k e. ( 0 ... N ) <-> ( k = 0 \/ k e. ( ( 0 + 1 ) ... N ) ) ) ) | 
						
							| 91 | 85 90 | mpbid |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( 1 ... N ) ) ) -> ( k = 0 \/ k e. ( ( 0 + 1 ) ... N ) ) ) | 
						
							| 92 |  | orel2 |  |-  ( -. k e. ( ( 0 + 1 ) ... N ) -> ( ( k = 0 \/ k e. ( ( 0 + 1 ) ... N ) ) -> k = 0 ) ) | 
						
							| 93 | 83 91 92 | sylc |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( 1 ... N ) ) ) -> k = 0 ) | 
						
							| 94 | 93 | iftrued |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( 1 ... N ) ) ) -> if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) = 0 ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( 1 ... N ) ) ) -> ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) = ( ( A ` k ) x. 0 ) ) | 
						
							| 96 | 63 17 18 | syl2an |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) | 
						
							| 97 | 96 | mul01d |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. 0 ) = 0 ) | 
						
							| 98 | 84 97 | sylan2 |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( 1 ... N ) ) ) -> ( ( A ` k ) x. 0 ) = 0 ) | 
						
							| 99 | 95 98 | eqtrd |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... N ) \ ( 1 ... N ) ) ) -> ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) = 0 ) | 
						
							| 100 |  | fzfid |  |-  ( ( ph /\ z e. CC ) -> ( 0 ... N ) e. Fin ) | 
						
							| 101 | 62 77 99 100 | fsumss |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 1 ... N ) ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 102 |  | elfznn0 |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> j e. NN0 ) | 
						
							| 103 | 102 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. NN0 ) | 
						
							| 104 | 103 | nn0cnd |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. CC ) | 
						
							| 105 |  | ax-1cn |  |-  1 e. CC | 
						
							| 106 |  | pncan |  |-  ( ( j e. CC /\ 1 e. CC ) -> ( ( j + 1 ) - 1 ) = j ) | 
						
							| 107 | 104 105 106 | sylancl |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) - 1 ) = j ) | 
						
							| 108 | 107 | oveq2d |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( z ^ ( ( j + 1 ) - 1 ) ) = ( z ^ j ) ) | 
						
							| 109 | 108 | oveq2d |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) x. ( z ^ ( ( j + 1 ) - 1 ) ) ) = ( ( j + 1 ) x. ( z ^ j ) ) ) | 
						
							| 110 | 109 | oveq2d |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( A ` ( j + 1 ) ) x. ( ( j + 1 ) x. ( z ^ ( ( j + 1 ) - 1 ) ) ) ) = ( ( A ` ( j + 1 ) ) x. ( ( j + 1 ) x. ( z ^ j ) ) ) ) | 
						
							| 111 | 3 | ad2antrr |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> A : NN0 --> CC ) | 
						
							| 112 |  | peano2nn0 |  |-  ( j e. NN0 -> ( j + 1 ) e. NN0 ) | 
						
							| 113 | 102 112 | syl |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> ( j + 1 ) e. NN0 ) | 
						
							| 114 | 113 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) e. NN0 ) | 
						
							| 115 | 111 114 | ffvelcdmd |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( A ` ( j + 1 ) ) e. CC ) | 
						
							| 116 | 114 | nn0cnd |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) e. CC ) | 
						
							| 117 |  | simplr |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> z e. CC ) | 
						
							| 118 | 117 103 | expcld |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( z ^ j ) e. CC ) | 
						
							| 119 | 115 116 118 | mulassd |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( A ` ( j + 1 ) ) x. ( j + 1 ) ) x. ( z ^ j ) ) = ( ( A ` ( j + 1 ) ) x. ( ( j + 1 ) x. ( z ^ j ) ) ) ) | 
						
							| 120 | 115 116 | mulcomd |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( A ` ( j + 1 ) ) x. ( j + 1 ) ) = ( ( j + 1 ) x. ( A ` ( j + 1 ) ) ) ) | 
						
							| 121 | 120 | oveq1d |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( A ` ( j + 1 ) ) x. ( j + 1 ) ) x. ( z ^ j ) ) = ( ( ( j + 1 ) x. ( A ` ( j + 1 ) ) ) x. ( z ^ j ) ) ) | 
						
							| 122 | 110 119 121 | 3eqtr2d |  |-  ( ( ( ph /\ z e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( A ` ( j + 1 ) ) x. ( ( j + 1 ) x. ( z ^ ( ( j + 1 ) - 1 ) ) ) ) = ( ( ( j + 1 ) x. ( A ` ( j + 1 ) ) ) x. ( z ^ j ) ) ) | 
						
							| 123 | 122 | sumeq2dv |  |-  ( ( ph /\ z e. CC ) -> sum_ j e. ( 0 ... ( N - 1 ) ) ( ( A ` ( j + 1 ) ) x. ( ( j + 1 ) x. ( z ^ ( ( j + 1 ) - 1 ) ) ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( ( j + 1 ) x. ( A ` ( j + 1 ) ) ) x. ( z ^ j ) ) ) | 
						
							| 124 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 125 | 124 | oveq1i |  |-  ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) | 
						
							| 126 | 125 | sumeq1i |  |-  sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( ( A ` ( j + 1 ) ) x. ( ( j + 1 ) x. ( z ^ ( ( j + 1 ) - 1 ) ) ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( A ` ( j + 1 ) ) x. ( ( j + 1 ) x. ( z ^ ( ( j + 1 ) - 1 ) ) ) ) | 
						
							| 127 |  | oveq1 |  |-  ( k = j -> ( k + 1 ) = ( j + 1 ) ) | 
						
							| 128 |  | fvoveq1 |  |-  ( k = j -> ( A ` ( k + 1 ) ) = ( A ` ( j + 1 ) ) ) | 
						
							| 129 | 127 128 | oveq12d |  |-  ( k = j -> ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) = ( ( j + 1 ) x. ( A ` ( j + 1 ) ) ) ) | 
						
							| 130 |  | oveq2 |  |-  ( k = j -> ( z ^ k ) = ( z ^ j ) ) | 
						
							| 131 | 129 130 | oveq12d |  |-  ( k = j -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( z ^ k ) ) = ( ( ( j + 1 ) x. ( A ` ( j + 1 ) ) ) x. ( z ^ j ) ) ) | 
						
							| 132 | 131 | cbvsumv |  |-  sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( z ^ k ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( ( j + 1 ) x. ( A ` ( j + 1 ) ) ) x. ( z ^ j ) ) | 
						
							| 133 | 123 126 132 | 3eqtr4g |  |-  ( ( ph /\ z e. CC ) -> sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( ( A ` ( j + 1 ) ) x. ( ( j + 1 ) x. ( z ^ ( ( j + 1 ) - 1 ) ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( z ^ k ) ) ) | 
						
							| 134 |  | 1zzd |  |-  ( ( ph /\ z e. CC ) -> 1 e. ZZ ) | 
						
							| 135 | 5 | adantr |  |-  ( ( ph /\ z e. CC ) -> N e. NN0 ) | 
						
							| 136 | 135 | nn0zd |  |-  ( ( ph /\ z e. CC ) -> N e. ZZ ) | 
						
							| 137 | 65 75 | mulcld |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 1 ... N ) ) -> ( ( A ` k ) x. ( k x. ( z ^ ( k - 1 ) ) ) ) e. CC ) | 
						
							| 138 |  | fveq2 |  |-  ( k = ( j + 1 ) -> ( A ` k ) = ( A ` ( j + 1 ) ) ) | 
						
							| 139 |  | id |  |-  ( k = ( j + 1 ) -> k = ( j + 1 ) ) | 
						
							| 140 |  | oveq1 |  |-  ( k = ( j + 1 ) -> ( k - 1 ) = ( ( j + 1 ) - 1 ) ) | 
						
							| 141 | 140 | oveq2d |  |-  ( k = ( j + 1 ) -> ( z ^ ( k - 1 ) ) = ( z ^ ( ( j + 1 ) - 1 ) ) ) | 
						
							| 142 | 139 141 | oveq12d |  |-  ( k = ( j + 1 ) -> ( k x. ( z ^ ( k - 1 ) ) ) = ( ( j + 1 ) x. ( z ^ ( ( j + 1 ) - 1 ) ) ) ) | 
						
							| 143 | 138 142 | oveq12d |  |-  ( k = ( j + 1 ) -> ( ( A ` k ) x. ( k x. ( z ^ ( k - 1 ) ) ) ) = ( ( A ` ( j + 1 ) ) x. ( ( j + 1 ) x. ( z ^ ( ( j + 1 ) - 1 ) ) ) ) ) | 
						
							| 144 | 134 134 136 137 143 | fsumshftm |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 1 ... N ) ( ( A ` k ) x. ( k x. ( z ^ ( k - 1 ) ) ) ) = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( ( A ` ( j + 1 ) ) x. ( ( j + 1 ) x. ( z ^ ( ( j + 1 ) - 1 ) ) ) ) ) | 
						
							| 145 |  | elfznn0 |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) | 
						
							| 146 | 145 | adantl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. NN0 ) | 
						
							| 147 |  | ovex |  |-  ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) e. _V | 
						
							| 148 | 4 | fvmpt2 |  |-  ( ( k e. NN0 /\ ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) e. _V ) -> ( B ` k ) = ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) ) | 
						
							| 149 | 146 147 148 | sylancl |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( B ` k ) = ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) ) | 
						
							| 150 | 149 | oveq1d |  |-  ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( B ` k ) x. ( z ^ k ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( z ^ k ) ) ) | 
						
							| 151 | 150 | sumeq2dv |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( B ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( z ^ k ) ) ) | 
						
							| 152 | 133 144 151 | 3eqtr4d |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 1 ... N ) ( ( A ` k ) x. ( k x. ( z ^ ( k - 1 ) ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( B ` k ) x. ( z ^ k ) ) ) | 
						
							| 153 | 59 101 152 | 3eqtr3d |  |-  ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( B ` k ) x. ( z ^ k ) ) ) | 
						
							| 154 | 153 | mpteq2dva |  |-  ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( B ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 155 | 154 2 | eqtr4d |  |-  ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. if ( k = 0 , 0 , ( k x. ( z ^ ( k - 1 ) ) ) ) ) ) = G ) | 
						
							| 156 | 6 52 155 | 3eqtrd |  |-  ( ph -> ( CC _D F ) = G ) |