Step |
Hyp |
Ref |
Expression |
1 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
2 |
1
|
adantl |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> F : CC --> CC ) |
3 |
2
|
feqmptd |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> F = ( a e. CC |-> ( F ` a ) ) ) |
4 |
|
simplr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ a e. CC ) -> F e. ( Poly ` S ) ) |
5 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
6 |
5
|
adantl |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( deg ` F ) e. NN0 ) |
7 |
6
|
nn0zd |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( deg ` F ) e. ZZ ) |
8 |
7
|
adantr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ a e. CC ) -> ( deg ` F ) e. ZZ ) |
9 |
|
uzid |
|- ( ( deg ` F ) e. ZZ -> ( deg ` F ) e. ( ZZ>= ` ( deg ` F ) ) ) |
10 |
|
peano2uz |
|- ( ( deg ` F ) e. ( ZZ>= ` ( deg ` F ) ) -> ( ( deg ` F ) + 1 ) e. ( ZZ>= ` ( deg ` F ) ) ) |
11 |
8 9 10
|
3syl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ a e. CC ) -> ( ( deg ` F ) + 1 ) e. ( ZZ>= ` ( deg ` F ) ) ) |
12 |
|
simpr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ a e. CC ) -> a e. CC ) |
13 |
|
eqid |
|- ( coeff ` F ) = ( coeff ` F ) |
14 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
15 |
13 14
|
coeid3 |
|- ( ( F e. ( Poly ` S ) /\ ( ( deg ` F ) + 1 ) e. ( ZZ>= ` ( deg ` F ) ) /\ a e. CC ) -> ( F ` a ) = sum_ b e. ( 0 ... ( ( deg ` F ) + 1 ) ) ( ( ( coeff ` F ) ` b ) x. ( a ^ b ) ) ) |
16 |
4 11 12 15
|
syl3anc |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ a e. CC ) -> ( F ` a ) = sum_ b e. ( 0 ... ( ( deg ` F ) + 1 ) ) ( ( ( coeff ` F ) ` b ) x. ( a ^ b ) ) ) |
17 |
16
|
mpteq2dva |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( a e. CC |-> ( F ` a ) ) = ( a e. CC |-> sum_ b e. ( 0 ... ( ( deg ` F ) + 1 ) ) ( ( ( coeff ` F ) ` b ) x. ( a ^ b ) ) ) ) |
18 |
3 17
|
eqtrd |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> F = ( a e. CC |-> sum_ b e. ( 0 ... ( ( deg ` F ) + 1 ) ) ( ( ( coeff ` F ) ` b ) x. ( a ^ b ) ) ) ) |
19 |
6
|
nn0cnd |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( deg ` F ) e. CC ) |
20 |
|
ax-1cn |
|- 1 e. CC |
21 |
|
pncan |
|- ( ( ( deg ` F ) e. CC /\ 1 e. CC ) -> ( ( ( deg ` F ) + 1 ) - 1 ) = ( deg ` F ) ) |
22 |
19 20 21
|
sylancl |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( ( ( deg ` F ) + 1 ) - 1 ) = ( deg ` F ) ) |
23 |
22
|
eqcomd |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( deg ` F ) = ( ( ( deg ` F ) + 1 ) - 1 ) ) |
24 |
23
|
oveq2d |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( 0 ... ( deg ` F ) ) = ( 0 ... ( ( ( deg ` F ) + 1 ) - 1 ) ) ) |
25 |
24
|
sumeq1d |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> sum_ b e. ( 0 ... ( deg ` F ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) = sum_ b e. ( 0 ... ( ( ( deg ` F ) + 1 ) - 1 ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) ) |
26 |
25
|
mpteq2dv |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( a e. CC |-> sum_ b e. ( 0 ... ( deg ` F ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) ) = ( a e. CC |-> sum_ b e. ( 0 ... ( ( ( deg ` F ) + 1 ) - 1 ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) ) ) |
27 |
13
|
coef3 |
|- ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> CC ) |
28 |
27
|
adantl |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( coeff ` F ) : NN0 --> CC ) |
29 |
|
oveq1 |
|- ( c = b -> ( c + 1 ) = ( b + 1 ) ) |
30 |
|
fvoveq1 |
|- ( c = b -> ( ( coeff ` F ) ` ( c + 1 ) ) = ( ( coeff ` F ) ` ( b + 1 ) ) ) |
31 |
29 30
|
oveq12d |
|- ( c = b -> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) = ( ( b + 1 ) x. ( ( coeff ` F ) ` ( b + 1 ) ) ) ) |
32 |
31
|
cbvmptv |
|- ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) = ( b e. NN0 |-> ( ( b + 1 ) x. ( ( coeff ` F ) ` ( b + 1 ) ) ) ) |
33 |
|
peano2nn0 |
|- ( ( deg ` F ) e. NN0 -> ( ( deg ` F ) + 1 ) e. NN0 ) |
34 |
6 33
|
syl |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( ( deg ` F ) + 1 ) e. NN0 ) |
35 |
18 26 28 32 34
|
dvply1 |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( CC _D F ) = ( a e. CC |-> sum_ b e. ( 0 ... ( deg ` F ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) ) ) |
36 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
37 |
36
|
subrgss |
|- ( S e. ( SubRing ` CCfld ) -> S C_ CC ) |
38 |
37
|
adantr |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> S C_ CC ) |
39 |
|
elfznn0 |
|- ( b e. ( 0 ... ( deg ` F ) ) -> b e. NN0 ) |
40 |
|
simpll |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> S e. ( SubRing ` CCfld ) ) |
41 |
|
zsssubrg |
|- ( S e. ( SubRing ` CCfld ) -> ZZ C_ S ) |
42 |
41
|
ad2antrr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ZZ C_ S ) |
43 |
|
peano2nn0 |
|- ( c e. NN0 -> ( c + 1 ) e. NN0 ) |
44 |
43
|
adantl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( c + 1 ) e. NN0 ) |
45 |
44
|
nn0zd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( c + 1 ) e. ZZ ) |
46 |
42 45
|
sseldd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( c + 1 ) e. S ) |
47 |
|
simplr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> F e. ( Poly ` S ) ) |
48 |
|
subrgsubg |
|- ( S e. ( SubRing ` CCfld ) -> S e. ( SubGrp ` CCfld ) ) |
49 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
50 |
49
|
subg0cl |
|- ( S e. ( SubGrp ` CCfld ) -> 0 e. S ) |
51 |
48 50
|
syl |
|- ( S e. ( SubRing ` CCfld ) -> 0 e. S ) |
52 |
51
|
ad2antrr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> 0 e. S ) |
53 |
13
|
coef2 |
|- ( ( F e. ( Poly ` S ) /\ 0 e. S ) -> ( coeff ` F ) : NN0 --> S ) |
54 |
47 52 53
|
syl2anc |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( coeff ` F ) : NN0 --> S ) |
55 |
54 44
|
ffvelrnd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( ( coeff ` F ) ` ( c + 1 ) ) e. S ) |
56 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
57 |
56
|
subrgmcl |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( c + 1 ) e. S /\ ( ( coeff ` F ) ` ( c + 1 ) ) e. S ) -> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) e. S ) |
58 |
40 46 55 57
|
syl3anc |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) e. S ) |
59 |
58
|
fmpttd |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) : NN0 --> S ) |
60 |
59
|
ffvelrnda |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ b e. NN0 ) -> ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) e. S ) |
61 |
39 60
|
sylan2 |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ b e. ( 0 ... ( deg ` F ) ) ) -> ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) e. S ) |
62 |
38 6 61
|
elplyd |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( a e. CC |-> sum_ b e. ( 0 ... ( deg ` F ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) ) e. ( Poly ` S ) ) |
63 |
35 62
|
eqeltrd |
|- ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( CC _D F ) e. ( Poly ` S ) ) |