| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyf |  |-  ( F e. ( Poly ` S ) -> F : CC --> CC ) | 
						
							| 2 | 1 | adantl |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> F : CC --> CC ) | 
						
							| 3 | 2 | feqmptd |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> F = ( a e. CC |-> ( F ` a ) ) ) | 
						
							| 4 |  | simplr |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ a e. CC ) -> F e. ( Poly ` S ) ) | 
						
							| 5 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 6 | 5 | adantl |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( deg ` F ) e. NN0 ) | 
						
							| 7 | 6 | nn0zd |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( deg ` F ) e. ZZ ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ a e. CC ) -> ( deg ` F ) e. ZZ ) | 
						
							| 9 |  | uzid |  |-  ( ( deg ` F ) e. ZZ -> ( deg ` F ) e. ( ZZ>= ` ( deg ` F ) ) ) | 
						
							| 10 |  | peano2uz |  |-  ( ( deg ` F ) e. ( ZZ>= ` ( deg ` F ) ) -> ( ( deg ` F ) + 1 ) e. ( ZZ>= ` ( deg ` F ) ) ) | 
						
							| 11 | 8 9 10 | 3syl |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ a e. CC ) -> ( ( deg ` F ) + 1 ) e. ( ZZ>= ` ( deg ` F ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ a e. CC ) -> a e. CC ) | 
						
							| 13 |  | eqid |  |-  ( coeff ` F ) = ( coeff ` F ) | 
						
							| 14 |  | eqid |  |-  ( deg ` F ) = ( deg ` F ) | 
						
							| 15 | 13 14 | coeid3 |  |-  ( ( F e. ( Poly ` S ) /\ ( ( deg ` F ) + 1 ) e. ( ZZ>= ` ( deg ` F ) ) /\ a e. CC ) -> ( F ` a ) = sum_ b e. ( 0 ... ( ( deg ` F ) + 1 ) ) ( ( ( coeff ` F ) ` b ) x. ( a ^ b ) ) ) | 
						
							| 16 | 4 11 12 15 | syl3anc |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ a e. CC ) -> ( F ` a ) = sum_ b e. ( 0 ... ( ( deg ` F ) + 1 ) ) ( ( ( coeff ` F ) ` b ) x. ( a ^ b ) ) ) | 
						
							| 17 | 16 | mpteq2dva |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( a e. CC |-> ( F ` a ) ) = ( a e. CC |-> sum_ b e. ( 0 ... ( ( deg ` F ) + 1 ) ) ( ( ( coeff ` F ) ` b ) x. ( a ^ b ) ) ) ) | 
						
							| 18 | 3 17 | eqtrd |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> F = ( a e. CC |-> sum_ b e. ( 0 ... ( ( deg ` F ) + 1 ) ) ( ( ( coeff ` F ) ` b ) x. ( a ^ b ) ) ) ) | 
						
							| 19 | 6 | nn0cnd |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( deg ` F ) e. CC ) | 
						
							| 20 |  | ax-1cn |  |-  1 e. CC | 
						
							| 21 |  | pncan |  |-  ( ( ( deg ` F ) e. CC /\ 1 e. CC ) -> ( ( ( deg ` F ) + 1 ) - 1 ) = ( deg ` F ) ) | 
						
							| 22 | 19 20 21 | sylancl |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( ( ( deg ` F ) + 1 ) - 1 ) = ( deg ` F ) ) | 
						
							| 23 | 22 | eqcomd |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( deg ` F ) = ( ( ( deg ` F ) + 1 ) - 1 ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( 0 ... ( deg ` F ) ) = ( 0 ... ( ( ( deg ` F ) + 1 ) - 1 ) ) ) | 
						
							| 25 | 24 | sumeq1d |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> sum_ b e. ( 0 ... ( deg ` F ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) = sum_ b e. ( 0 ... ( ( ( deg ` F ) + 1 ) - 1 ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) ) | 
						
							| 26 | 25 | mpteq2dv |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( a e. CC |-> sum_ b e. ( 0 ... ( deg ` F ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) ) = ( a e. CC |-> sum_ b e. ( 0 ... ( ( ( deg ` F ) + 1 ) - 1 ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) ) ) | 
						
							| 27 | 13 | coef3 |  |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> CC ) | 
						
							| 28 | 27 | adantl |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( coeff ` F ) : NN0 --> CC ) | 
						
							| 29 |  | oveq1 |  |-  ( c = b -> ( c + 1 ) = ( b + 1 ) ) | 
						
							| 30 |  | fvoveq1 |  |-  ( c = b -> ( ( coeff ` F ) ` ( c + 1 ) ) = ( ( coeff ` F ) ` ( b + 1 ) ) ) | 
						
							| 31 | 29 30 | oveq12d |  |-  ( c = b -> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) = ( ( b + 1 ) x. ( ( coeff ` F ) ` ( b + 1 ) ) ) ) | 
						
							| 32 | 31 | cbvmptv |  |-  ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) = ( b e. NN0 |-> ( ( b + 1 ) x. ( ( coeff ` F ) ` ( b + 1 ) ) ) ) | 
						
							| 33 |  | peano2nn0 |  |-  ( ( deg ` F ) e. NN0 -> ( ( deg ` F ) + 1 ) e. NN0 ) | 
						
							| 34 | 6 33 | syl |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( ( deg ` F ) + 1 ) e. NN0 ) | 
						
							| 35 | 18 26 28 32 34 | dvply1 |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( CC _D F ) = ( a e. CC |-> sum_ b e. ( 0 ... ( deg ` F ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) ) ) | 
						
							| 36 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 37 | 36 | subrgss |  |-  ( S e. ( SubRing ` CCfld ) -> S C_ CC ) | 
						
							| 38 | 37 | adantr |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> S C_ CC ) | 
						
							| 39 |  | elfznn0 |  |-  ( b e. ( 0 ... ( deg ` F ) ) -> b e. NN0 ) | 
						
							| 40 |  | simpll |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> S e. ( SubRing ` CCfld ) ) | 
						
							| 41 |  | zsssubrg |  |-  ( S e. ( SubRing ` CCfld ) -> ZZ C_ S ) | 
						
							| 42 | 41 | ad2antrr |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ZZ C_ S ) | 
						
							| 43 |  | peano2nn0 |  |-  ( c e. NN0 -> ( c + 1 ) e. NN0 ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( c + 1 ) e. NN0 ) | 
						
							| 45 | 44 | nn0zd |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( c + 1 ) e. ZZ ) | 
						
							| 46 | 42 45 | sseldd |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( c + 1 ) e. S ) | 
						
							| 47 |  | simplr |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> F e. ( Poly ` S ) ) | 
						
							| 48 |  | subrgsubg |  |-  ( S e. ( SubRing ` CCfld ) -> S e. ( SubGrp ` CCfld ) ) | 
						
							| 49 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 50 | 49 | subg0cl |  |-  ( S e. ( SubGrp ` CCfld ) -> 0 e. S ) | 
						
							| 51 | 48 50 | syl |  |-  ( S e. ( SubRing ` CCfld ) -> 0 e. S ) | 
						
							| 52 | 51 | ad2antrr |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> 0 e. S ) | 
						
							| 53 | 13 | coef2 |  |-  ( ( F e. ( Poly ` S ) /\ 0 e. S ) -> ( coeff ` F ) : NN0 --> S ) | 
						
							| 54 | 47 52 53 | syl2anc |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( coeff ` F ) : NN0 --> S ) | 
						
							| 55 | 54 44 | ffvelcdmd |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( ( coeff ` F ) ` ( c + 1 ) ) e. S ) | 
						
							| 56 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 57 | 56 | subrgmcl |  |-  ( ( S e. ( SubRing ` CCfld ) /\ ( c + 1 ) e. S /\ ( ( coeff ` F ) ` ( c + 1 ) ) e. S ) -> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) e. S ) | 
						
							| 58 | 40 46 55 57 | syl3anc |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ c e. NN0 ) -> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) e. S ) | 
						
							| 59 | 58 | fmpttd |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) : NN0 --> S ) | 
						
							| 60 | 59 | ffvelcdmda |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ b e. NN0 ) -> ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) e. S ) | 
						
							| 61 | 39 60 | sylan2 |  |-  ( ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) /\ b e. ( 0 ... ( deg ` F ) ) ) -> ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) e. S ) | 
						
							| 62 | 38 6 61 | elplyd |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( a e. CC |-> sum_ b e. ( 0 ... ( deg ` F ) ) ( ( ( c e. NN0 |-> ( ( c + 1 ) x. ( ( coeff ` F ) ` ( c + 1 ) ) ) ) ` b ) x. ( a ^ b ) ) ) e. ( Poly ` S ) ) | 
						
							| 63 | 35 62 | eqeltrd |  |-  ( ( S e. ( SubRing ` CCfld ) /\ F e. ( Poly ` S ) ) -> ( CC _D F ) e. ( Poly ` S ) ) |