| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvr1.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | dvr1.d |  |-  ./ = ( /r ` R ) | 
						
							| 3 |  | dvr1.o |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | id |  |-  ( X e. B -> X e. B ) | 
						
							| 5 |  | eqid |  |-  ( Unit ` R ) = ( Unit ` R ) | 
						
							| 6 | 5 3 | 1unit |  |-  ( R e. Ring -> .1. e. ( Unit ` R ) ) | 
						
							| 7 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 8 |  | eqid |  |-  ( invr ` R ) = ( invr ` R ) | 
						
							| 9 | 1 7 5 8 2 | dvrval |  |-  ( ( X e. B /\ .1. e. ( Unit ` R ) ) -> ( X ./ .1. ) = ( X ( .r ` R ) ( ( invr ` R ) ` .1. ) ) ) | 
						
							| 10 | 4 6 9 | syl2anr |  |-  ( ( R e. Ring /\ X e. B ) -> ( X ./ .1. ) = ( X ( .r ` R ) ( ( invr ` R ) ` .1. ) ) ) | 
						
							| 11 | 8 3 | 1rinv |  |-  ( R e. Ring -> ( ( invr ` R ) ` .1. ) = .1. ) | 
						
							| 12 | 11 | adantr |  |-  ( ( R e. Ring /\ X e. B ) -> ( ( invr ` R ) ` .1. ) = .1. ) | 
						
							| 13 | 12 | oveq2d |  |-  ( ( R e. Ring /\ X e. B ) -> ( X ( .r ` R ) ( ( invr ` R ) ` .1. ) ) = ( X ( .r ` R ) .1. ) ) | 
						
							| 14 | 1 7 3 | ringridm |  |-  ( ( R e. Ring /\ X e. B ) -> ( X ( .r ` R ) .1. ) = X ) | 
						
							| 15 | 10 13 14 | 3eqtrd |  |-  ( ( R e. Ring /\ X e. B ) -> ( X ./ .1. ) = X ) |