Step |
Hyp |
Ref |
Expression |
1 |
|
dvr1.b |
|- B = ( Base ` R ) |
2 |
|
dvr1.d |
|- ./ = ( /r ` R ) |
3 |
|
dvr1.o |
|- .1. = ( 1r ` R ) |
4 |
|
id |
|- ( X e. B -> X e. B ) |
5 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
6 |
5 3
|
1unit |
|- ( R e. Ring -> .1. e. ( Unit ` R ) ) |
7 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
8 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
9 |
1 7 5 8 2
|
dvrval |
|- ( ( X e. B /\ .1. e. ( Unit ` R ) ) -> ( X ./ .1. ) = ( X ( .r ` R ) ( ( invr ` R ) ` .1. ) ) ) |
10 |
4 6 9
|
syl2anr |
|- ( ( R e. Ring /\ X e. B ) -> ( X ./ .1. ) = ( X ( .r ` R ) ( ( invr ` R ) ` .1. ) ) ) |
11 |
8 3
|
1rinv |
|- ( R e. Ring -> ( ( invr ` R ) ` .1. ) = .1. ) |
12 |
11
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> ( ( invr ` R ) ` .1. ) = .1. ) |
13 |
12
|
oveq2d |
|- ( ( R e. Ring /\ X e. B ) -> ( X ( .r ` R ) ( ( invr ` R ) ` .1. ) ) = ( X ( .r ` R ) .1. ) ) |
14 |
1 7 3
|
ringridm |
|- ( ( R e. Ring /\ X e. B ) -> ( X ( .r ` R ) .1. ) = X ) |
15 |
10 13 14
|
3eqtrd |
|- ( ( R e. Ring /\ X e. B ) -> ( X ./ .1. ) = X ) |