Step |
Hyp |
Ref |
Expression |
1 |
|
dvradcnv.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
2 |
|
dvradcnv.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
3 |
|
dvradcnv.h |
|- H = ( n e. NN0 |-> ( ( ( n + 1 ) x. ( A ` ( n + 1 ) ) ) x. ( X ^ n ) ) ) |
4 |
|
dvradcnv.a |
|- ( ph -> A : NN0 --> CC ) |
5 |
|
dvradcnv.x |
|- ( ph -> X e. CC ) |
6 |
|
dvradcnv.l |
|- ( ph -> ( abs ` X ) < R ) |
7 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
8 |
|
1nn0 |
|- 1 e. NN0 |
9 |
8
|
a1i |
|- ( ph -> 1 e. NN0 ) |
10 |
|
ax-1cn |
|- 1 e. CC |
11 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
12 |
11
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> k e. CC ) |
13 |
|
nn0ex |
|- NN0 e. _V |
14 |
13
|
mptex |
|- ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) e. _V |
15 |
14
|
shftval4 |
|- ( ( 1 e. CC /\ k e. CC ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) ) |
16 |
10 12 15
|
sylancr |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) ) |
17 |
|
addcom |
|- ( ( 1 e. CC /\ k e. CC ) -> ( 1 + k ) = ( k + 1 ) ) |
18 |
10 12 17
|
sylancr |
|- ( ( ph /\ k e. NN0 ) -> ( 1 + k ) = ( k + 1 ) ) |
19 |
18
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) ) |
20 |
|
peano2nn0 |
|- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
21 |
20
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. NN0 ) |
22 |
|
id |
|- ( i = ( k + 1 ) -> i = ( k + 1 ) ) |
23 |
|
2fveq3 |
|- ( i = ( k + 1 ) -> ( abs ` ( ( G ` X ) ` i ) ) = ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) |
24 |
22 23
|
oveq12d |
|- ( i = ( k + 1 ) -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) ) |
25 |
|
eqid |
|- ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) = ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) |
26 |
|
ovex |
|- ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) e. _V |
27 |
24 25 26
|
fvmpt |
|- ( ( k + 1 ) e. NN0 -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) ) |
28 |
21 27
|
syl |
|- ( ( ph /\ k e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) ) |
29 |
1
|
pserval2 |
|- ( ( X e. CC /\ ( k + 1 ) e. NN0 ) -> ( ( G ` X ) ` ( k + 1 ) ) = ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) |
30 |
5 20 29
|
syl2an |
|- ( ( ph /\ k e. NN0 ) -> ( ( G ` X ) ` ( k + 1 ) ) = ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) |
31 |
30
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) = ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) |
32 |
31
|
oveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
33 |
28 32
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
34 |
16 19 33
|
3eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
35 |
21
|
nn0red |
|- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. RR ) |
36 |
|
ffvelrn |
|- ( ( A : NN0 --> CC /\ ( k + 1 ) e. NN0 ) -> ( A ` ( k + 1 ) ) e. CC ) |
37 |
4 20 36
|
syl2an |
|- ( ( ph /\ k e. NN0 ) -> ( A ` ( k + 1 ) ) e. CC ) |
38 |
|
expcl |
|- ( ( X e. CC /\ ( k + 1 ) e. NN0 ) -> ( X ^ ( k + 1 ) ) e. CC ) |
39 |
5 20 38
|
syl2an |
|- ( ( ph /\ k e. NN0 ) -> ( X ^ ( k + 1 ) ) e. CC ) |
40 |
37 39
|
mulcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) e. CC ) |
41 |
40
|
abscld |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) e. RR ) |
42 |
35 41
|
remulcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) e. RR ) |
43 |
34 42
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) e. RR ) |
44 |
|
oveq1 |
|- ( n = k -> ( n + 1 ) = ( k + 1 ) ) |
45 |
44
|
fveq2d |
|- ( n = k -> ( A ` ( n + 1 ) ) = ( A ` ( k + 1 ) ) ) |
46 |
44 45
|
oveq12d |
|- ( n = k -> ( ( n + 1 ) x. ( A ` ( n + 1 ) ) ) = ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) ) |
47 |
|
oveq2 |
|- ( n = k -> ( X ^ n ) = ( X ^ k ) ) |
48 |
46 47
|
oveq12d |
|- ( n = k -> ( ( ( n + 1 ) x. ( A ` ( n + 1 ) ) ) x. ( X ^ n ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) |
49 |
|
ovex |
|- ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) e. _V |
50 |
48 3 49
|
fvmpt |
|- ( k e. NN0 -> ( H ` k ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) |
51 |
50
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) |
52 |
21
|
nn0cnd |
|- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. CC ) |
53 |
52 37
|
mulcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) e. CC ) |
54 |
|
expcl |
|- ( ( X e. CC /\ k e. NN0 ) -> ( X ^ k ) e. CC ) |
55 |
5 54
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( X ^ k ) e. CC ) |
56 |
53 55
|
mulcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) e. CC ) |
57 |
51 56
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) e. CC ) |
58 |
|
id |
|- ( i = k -> i = k ) |
59 |
|
2fveq3 |
|- ( i = k -> ( abs ` ( ( G ` X ) ` i ) ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
60 |
58 59
|
oveq12d |
|- ( i = k -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
61 |
60
|
cbvmptv |
|- ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) = ( k e. NN0 |-> ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
62 |
1 4 2 5 6 61
|
radcnvlt1 |
|- ( ph -> ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) |
63 |
62
|
simpld |
|- ( ph -> seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) e. dom ~~> ) |
64 |
|
climdm |
|- ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) e. dom ~~> <-> seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) |
65 |
63 64
|
sylib |
|- ( ph -> seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) |
66 |
|
0z |
|- 0 e. ZZ |
67 |
|
neg1z |
|- -u 1 e. ZZ |
68 |
14
|
isershft |
|- ( ( 0 e. ZZ /\ -u 1 e. ZZ ) -> ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) <-> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) ) |
69 |
66 67 68
|
mp2an |
|- ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) <-> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) |
70 |
65 69
|
sylib |
|- ( ph -> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) |
71 |
|
seqex |
|- seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. _V |
72 |
|
fvex |
|- ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) e. _V |
73 |
71 72
|
breldm |
|- ( seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) -> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) |
74 |
70 73
|
syl |
|- ( ph -> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) |
75 |
|
eqid |
|- ( ZZ>= ` ( 0 + -u 1 ) ) = ( ZZ>= ` ( 0 + -u 1 ) ) |
76 |
|
neg1cn |
|- -u 1 e. CC |
77 |
76
|
addid2i |
|- ( 0 + -u 1 ) = -u 1 |
78 |
|
0le1 |
|- 0 <_ 1 |
79 |
|
1re |
|- 1 e. RR |
80 |
|
le0neg2 |
|- ( 1 e. RR -> ( 0 <_ 1 <-> -u 1 <_ 0 ) ) |
81 |
79 80
|
ax-mp |
|- ( 0 <_ 1 <-> -u 1 <_ 0 ) |
82 |
78 81
|
mpbi |
|- -u 1 <_ 0 |
83 |
77 82
|
eqbrtri |
|- ( 0 + -u 1 ) <_ 0 |
84 |
77 67
|
eqeltri |
|- ( 0 + -u 1 ) e. ZZ |
85 |
84
|
eluz1i |
|- ( 0 e. ( ZZ>= ` ( 0 + -u 1 ) ) <-> ( 0 e. ZZ /\ ( 0 + -u 1 ) <_ 0 ) ) |
86 |
66 83 85
|
mpbir2an |
|- 0 e. ( ZZ>= ` ( 0 + -u 1 ) ) |
87 |
86
|
a1i |
|- ( ph -> 0 e. ( ZZ>= ` ( 0 + -u 1 ) ) ) |
88 |
|
eluzelcn |
|- ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> k e. CC ) |
89 |
88
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> k e. CC ) |
90 |
10 89 15
|
sylancr |
|- ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) ) |
91 |
|
nn0re |
|- ( i e. NN0 -> i e. RR ) |
92 |
91
|
adantl |
|- ( ( ph /\ i e. NN0 ) -> i e. RR ) |
93 |
1 4 5
|
psergf |
|- ( ph -> ( G ` X ) : NN0 --> CC ) |
94 |
93
|
ffvelrnda |
|- ( ( ph /\ i e. NN0 ) -> ( ( G ` X ) ` i ) e. CC ) |
95 |
94
|
abscld |
|- ( ( ph /\ i e. NN0 ) -> ( abs ` ( ( G ` X ) ` i ) ) e. RR ) |
96 |
92 95
|
remulcld |
|- ( ( ph /\ i e. NN0 ) -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) e. RR ) |
97 |
96
|
recnd |
|- ( ( ph /\ i e. NN0 ) -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) e. CC ) |
98 |
97
|
fmpttd |
|- ( ph -> ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) : NN0 --> CC ) |
99 |
10 88 17
|
sylancr |
|- ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( 1 + k ) = ( k + 1 ) ) |
100 |
|
eluzp1p1 |
|- ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( k + 1 ) e. ( ZZ>= ` ( ( 0 + -u 1 ) + 1 ) ) ) |
101 |
77
|
oveq1i |
|- ( ( 0 + -u 1 ) + 1 ) = ( -u 1 + 1 ) |
102 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
103 |
10 76 102
|
addcomli |
|- ( -u 1 + 1 ) = 0 |
104 |
101 103
|
eqtri |
|- ( ( 0 + -u 1 ) + 1 ) = 0 |
105 |
104
|
fveq2i |
|- ( ZZ>= ` ( ( 0 + -u 1 ) + 1 ) ) = ( ZZ>= ` 0 ) |
106 |
7 105
|
eqtr4i |
|- NN0 = ( ZZ>= ` ( ( 0 + -u 1 ) + 1 ) ) |
107 |
100 106
|
eleqtrrdi |
|- ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( k + 1 ) e. NN0 ) |
108 |
99 107
|
eqeltrd |
|- ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( 1 + k ) e. NN0 ) |
109 |
|
ffvelrn |
|- ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) : NN0 --> CC /\ ( 1 + k ) e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) e. CC ) |
110 |
98 108 109
|
syl2an |
|- ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) e. CC ) |
111 |
90 110
|
eqeltrd |
|- ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) e. CC ) |
112 |
75 87 111
|
iserex |
|- ( ph -> ( seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> <-> seq 0 ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) ) |
113 |
74 112
|
mpbid |
|- ( ph -> seq 0 ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) |
114 |
|
1red |
|- ( ( ph /\ X = 0 ) -> 1 e. RR ) |
115 |
|
neqne |
|- ( -. X = 0 -> X =/= 0 ) |
116 |
|
absrpcl |
|- ( ( X e. CC /\ X =/= 0 ) -> ( abs ` X ) e. RR+ ) |
117 |
5 115 116
|
syl2an |
|- ( ( ph /\ -. X = 0 ) -> ( abs ` X ) e. RR+ ) |
118 |
117
|
rprecred |
|- ( ( ph /\ -. X = 0 ) -> ( 1 / ( abs ` X ) ) e. RR ) |
119 |
114 118
|
ifclda |
|- ( ph -> if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) e. RR ) |
120 |
|
oveq1 |
|- ( 1 = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
121 |
120
|
breq2d |
|- ( 1 = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) <-> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) ) |
122 |
|
oveq1 |
|- ( ( 1 / ( abs ` X ) ) = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
123 |
122
|
breq2d |
|- ( ( 1 / ( abs ` X ) ) = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) <-> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) ) |
124 |
|
elnnuz |
|- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
125 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
126 |
124 125
|
sylbir |
|- ( k e. ( ZZ>= ` 1 ) -> k e. NN0 ) |
127 |
21
|
nn0ge0d |
|- ( ( ph /\ k e. NN0 ) -> 0 <_ ( k + 1 ) ) |
128 |
40
|
absge0d |
|- ( ( ph /\ k e. NN0 ) -> 0 <_ ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) |
129 |
35 41 127 128
|
mulge0d |
|- ( ( ph /\ k e. NN0 ) -> 0 <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
130 |
126 129
|
sylan2 |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> 0 <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
131 |
130
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> 0 <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
132 |
|
oveq1 |
|- ( X = 0 -> ( X ^ k ) = ( 0 ^ k ) ) |
133 |
|
simpr |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> k e. ( ZZ>= ` 1 ) ) |
134 |
133 124
|
sylibr |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> k e. NN ) |
135 |
134
|
0expd |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( 0 ^ k ) = 0 ) |
136 |
132 135
|
sylan9eqr |
|- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( X ^ k ) = 0 ) |
137 |
136
|
oveq2d |
|- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) ) |
138 |
53
|
mul01d |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) = 0 ) |
139 |
126 138
|
sylan2 |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) = 0 ) |
140 |
139
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) = 0 ) |
141 |
137 140
|
eqtrd |
|- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) = 0 ) |
142 |
141
|
abs00bd |
|- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) = 0 ) |
143 |
42
|
recnd |
|- ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) e. CC ) |
144 |
143
|
mulid2d |
|- ( ( ph /\ k e. NN0 ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
145 |
126 144
|
sylan2 |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
146 |
145
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
147 |
131 142 146
|
3brtr4d |
|- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
148 |
|
df-ne |
|- ( X =/= 0 <-> -. X = 0 ) |
149 |
56
|
abscld |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) e. RR ) |
150 |
52 37 55
|
mulassd |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) = ( ( k + 1 ) x. ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) |
151 |
150
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) = ( abs ` ( ( k + 1 ) x. ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
152 |
37 55
|
mulcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) e. CC ) |
153 |
52 152
|
absmuld |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( k + 1 ) x. ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) = ( ( abs ` ( k + 1 ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
154 |
35 127
|
absidd |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( k + 1 ) ) = ( k + 1 ) ) |
155 |
154
|
oveq1d |
|- ( ( ph /\ k e. NN0 ) -> ( ( abs ` ( k + 1 ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
156 |
151 153 155
|
3eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
157 |
149 156
|
eqled |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
158 |
157
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
159 |
5
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> X e. CC ) |
160 |
116
|
rpreccld |
|- ( ( X e. CC /\ X =/= 0 ) -> ( 1 / ( abs ` X ) ) e. RR+ ) |
161 |
159 160
|
sylan |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( 1 / ( abs ` X ) ) e. RR+ ) |
162 |
161
|
rpcnd |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( 1 / ( abs ` X ) ) e. CC ) |
163 |
52
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( k + 1 ) e. CC ) |
164 |
41
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) e. RR ) |
165 |
164
|
recnd |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) e. CC ) |
166 |
162 163 165
|
mul12d |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
167 |
40
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) e. CC ) |
168 |
5
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> X e. CC ) |
169 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> X =/= 0 ) |
170 |
167 168 169
|
absdivd |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) ) = ( ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) / ( abs ` X ) ) ) |
171 |
37
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( A ` ( k + 1 ) ) e. CC ) |
172 |
39
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ ( k + 1 ) ) e. CC ) |
173 |
171 172 168 169
|
divassd |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) = ( ( A ` ( k + 1 ) ) x. ( ( X ^ ( k + 1 ) ) / X ) ) ) |
174 |
12
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> k e. CC ) |
175 |
|
pncan |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
176 |
174 10 175
|
sylancl |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( k + 1 ) - 1 ) = k ) |
177 |
176
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ ( ( k + 1 ) - 1 ) ) = ( X ^ k ) ) |
178 |
21
|
nn0zd |
|- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. ZZ ) |
179 |
178
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( k + 1 ) e. ZZ ) |
180 |
168 169 179
|
expm1d |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ ( ( k + 1 ) - 1 ) ) = ( ( X ^ ( k + 1 ) ) / X ) ) |
181 |
177 180
|
eqtr3d |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ k ) = ( ( X ^ ( k + 1 ) ) / X ) ) |
182 |
181
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) = ( ( A ` ( k + 1 ) ) x. ( ( X ^ ( k + 1 ) ) / X ) ) ) |
183 |
173 182
|
eqtr4d |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) = ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) |
184 |
183
|
fveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) ) = ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) |
185 |
5
|
abscld |
|- ( ph -> ( abs ` X ) e. RR ) |
186 |
185
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) e. RR ) |
187 |
186
|
recnd |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) e. CC ) |
188 |
159 116
|
sylan |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) e. RR+ ) |
189 |
188
|
rpne0d |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) =/= 0 ) |
190 |
165 187 189
|
divrec2d |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) / ( abs ` X ) ) = ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) |
191 |
170 184 190
|
3eqtr3rd |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) = ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) |
192 |
191
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( k + 1 ) x. ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
193 |
166 192
|
eqtrd |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) |
194 |
158 193
|
breqtrrd |
|- ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
195 |
126 194
|
sylanl2 |
|- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X =/= 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
196 |
148 195
|
sylan2br |
|- ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ -. X = 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
197 |
121 123 147 196
|
ifbothda |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
198 |
51
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` ( H ` k ) ) = ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) ) |
199 |
126 198
|
sylan2 |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( H ` k ) ) = ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) ) |
200 |
34
|
oveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
201 |
126 200
|
sylan2 |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) |
202 |
197 199 201
|
3brtr4d |
|- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( H ` k ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) ) ) |
203 |
7 9 43 57 113 119 202
|
cvgcmpce |
|- ( ph -> seq 0 ( + , H ) e. dom ~~> ) |