| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvradcnv.g |  |-  G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) | 
						
							| 2 |  | dvradcnv.r |  |-  R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) | 
						
							| 3 |  | dvradcnv.h |  |-  H = ( n e. NN0 |-> ( ( ( n + 1 ) x. ( A ` ( n + 1 ) ) ) x. ( X ^ n ) ) ) | 
						
							| 4 |  | dvradcnv.a |  |-  ( ph -> A : NN0 --> CC ) | 
						
							| 5 |  | dvradcnv.x |  |-  ( ph -> X e. CC ) | 
						
							| 6 |  | dvradcnv.l |  |-  ( ph -> ( abs ` X ) < R ) | 
						
							| 7 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 8 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 9 | 8 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 10 |  | ax-1cn |  |-  1 e. CC | 
						
							| 11 |  | nn0cn |  |-  ( k e. NN0 -> k e. CC ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> k e. CC ) | 
						
							| 13 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 14 | 13 | mptex |  |-  ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) e. _V | 
						
							| 15 | 14 | shftval4 |  |-  ( ( 1 e. CC /\ k e. CC ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) ) | 
						
							| 16 | 10 12 15 | sylancr |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) ) | 
						
							| 17 |  | addcom |  |-  ( ( 1 e. CC /\ k e. CC ) -> ( 1 + k ) = ( k + 1 ) ) | 
						
							| 18 | 10 12 17 | sylancr |  |-  ( ( ph /\ k e. NN0 ) -> ( 1 + k ) = ( k + 1 ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) ) | 
						
							| 20 |  | peano2nn0 |  |-  ( k e. NN0 -> ( k + 1 ) e. NN0 ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. NN0 ) | 
						
							| 22 |  | id |  |-  ( i = ( k + 1 ) -> i = ( k + 1 ) ) | 
						
							| 23 |  | 2fveq3 |  |-  ( i = ( k + 1 ) -> ( abs ` ( ( G ` X ) ` i ) ) = ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) | 
						
							| 24 | 22 23 | oveq12d |  |-  ( i = ( k + 1 ) -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) ) | 
						
							| 25 |  | eqid |  |-  ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) = ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) | 
						
							| 26 |  | ovex |  |-  ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) e. _V | 
						
							| 27 | 24 25 26 | fvmpt |  |-  ( ( k + 1 ) e. NN0 -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) ) | 
						
							| 28 | 21 27 | syl |  |-  ( ( ph /\ k e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) ) | 
						
							| 29 | 1 | pserval2 |  |-  ( ( X e. CC /\ ( k + 1 ) e. NN0 ) -> ( ( G ` X ) ` ( k + 1 ) ) = ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) | 
						
							| 30 | 5 20 29 | syl2an |  |-  ( ( ph /\ k e. NN0 ) -> ( ( G ` X ) ` ( k + 1 ) ) = ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) = ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( abs ` ( ( G ` X ) ` ( k + 1 ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) | 
						
							| 33 | 28 32 | eqtrd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) | 
						
							| 34 | 16 19 33 | 3eqtrd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) | 
						
							| 35 | 21 | nn0red |  |-  ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. RR ) | 
						
							| 36 |  | ffvelcdm |  |-  ( ( A : NN0 --> CC /\ ( k + 1 ) e. NN0 ) -> ( A ` ( k + 1 ) ) e. CC ) | 
						
							| 37 | 4 20 36 | syl2an |  |-  ( ( ph /\ k e. NN0 ) -> ( A ` ( k + 1 ) ) e. CC ) | 
						
							| 38 |  | expcl |  |-  ( ( X e. CC /\ ( k + 1 ) e. NN0 ) -> ( X ^ ( k + 1 ) ) e. CC ) | 
						
							| 39 | 5 20 38 | syl2an |  |-  ( ( ph /\ k e. NN0 ) -> ( X ^ ( k + 1 ) ) e. CC ) | 
						
							| 40 | 37 39 | mulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) e. CC ) | 
						
							| 41 | 40 | abscld |  |-  ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) e. RR ) | 
						
							| 42 | 35 41 | remulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) e. RR ) | 
						
							| 43 | 34 42 | eqeltrd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) e. RR ) | 
						
							| 44 |  | oveq1 |  |-  ( n = k -> ( n + 1 ) = ( k + 1 ) ) | 
						
							| 45 | 44 | fveq2d |  |-  ( n = k -> ( A ` ( n + 1 ) ) = ( A ` ( k + 1 ) ) ) | 
						
							| 46 | 44 45 | oveq12d |  |-  ( n = k -> ( ( n + 1 ) x. ( A ` ( n + 1 ) ) ) = ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) ) | 
						
							| 47 |  | oveq2 |  |-  ( n = k -> ( X ^ n ) = ( X ^ k ) ) | 
						
							| 48 | 46 47 | oveq12d |  |-  ( n = k -> ( ( ( n + 1 ) x. ( A ` ( n + 1 ) ) ) x. ( X ^ n ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) | 
						
							| 49 |  | ovex |  |-  ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) e. _V | 
						
							| 50 | 48 3 49 | fvmpt |  |-  ( k e. NN0 -> ( H ` k ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) | 
						
							| 51 | 50 | adantl |  |-  ( ( ph /\ k e. NN0 ) -> ( H ` k ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) | 
						
							| 52 | 21 | nn0cnd |  |-  ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. CC ) | 
						
							| 53 | 52 37 | mulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) e. CC ) | 
						
							| 54 |  | expcl |  |-  ( ( X e. CC /\ k e. NN0 ) -> ( X ^ k ) e. CC ) | 
						
							| 55 | 5 54 | sylan |  |-  ( ( ph /\ k e. NN0 ) -> ( X ^ k ) e. CC ) | 
						
							| 56 | 53 55 | mulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) e. CC ) | 
						
							| 57 | 51 56 | eqeltrd |  |-  ( ( ph /\ k e. NN0 ) -> ( H ` k ) e. CC ) | 
						
							| 58 |  | id |  |-  ( i = k -> i = k ) | 
						
							| 59 |  | 2fveq3 |  |-  ( i = k -> ( abs ` ( ( G ` X ) ` i ) ) = ( abs ` ( ( G ` X ) ` k ) ) ) | 
						
							| 60 | 58 59 | oveq12d |  |-  ( i = k -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) | 
						
							| 61 | 60 | cbvmptv |  |-  ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) = ( k e. NN0 |-> ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) | 
						
							| 62 | 1 4 2 5 6 61 | radcnvlt1 |  |-  ( ph -> ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) e. dom ~~> /\ seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) ) | 
						
							| 63 | 62 | simpld |  |-  ( ph -> seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) e. dom ~~> ) | 
						
							| 64 |  | climdm |  |-  ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) e. dom ~~> <-> seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) | 
						
							| 65 | 63 64 | sylib |  |-  ( ph -> seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) | 
						
							| 66 |  | 0z |  |-  0 e. ZZ | 
						
							| 67 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 68 | 14 | isershft |  |-  ( ( 0 e. ZZ /\ -u 1 e. ZZ ) -> ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) <-> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) ) | 
						
							| 69 | 66 67 68 | mp2an |  |-  ( seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) <-> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) | 
						
							| 70 | 65 69 | sylib |  |-  ( ph -> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) ) | 
						
							| 71 |  | seqex |  |-  seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. _V | 
						
							| 72 |  | fvex |  |-  ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) e. _V | 
						
							| 73 | 71 72 | breldm |  |-  ( seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) ~~> ( ~~> ` seq 0 ( + , ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ) ) -> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) | 
						
							| 74 | 70 73 | syl |  |-  ( ph -> seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) | 
						
							| 75 |  | eqid |  |-  ( ZZ>= ` ( 0 + -u 1 ) ) = ( ZZ>= ` ( 0 + -u 1 ) ) | 
						
							| 76 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 77 | 76 | addlidi |  |-  ( 0 + -u 1 ) = -u 1 | 
						
							| 78 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 79 |  | 1re |  |-  1 e. RR | 
						
							| 80 |  | le0neg2 |  |-  ( 1 e. RR -> ( 0 <_ 1 <-> -u 1 <_ 0 ) ) | 
						
							| 81 | 79 80 | ax-mp |  |-  ( 0 <_ 1 <-> -u 1 <_ 0 ) | 
						
							| 82 | 78 81 | mpbi |  |-  -u 1 <_ 0 | 
						
							| 83 | 77 82 | eqbrtri |  |-  ( 0 + -u 1 ) <_ 0 | 
						
							| 84 | 77 67 | eqeltri |  |-  ( 0 + -u 1 ) e. ZZ | 
						
							| 85 | 84 | eluz1i |  |-  ( 0 e. ( ZZ>= ` ( 0 + -u 1 ) ) <-> ( 0 e. ZZ /\ ( 0 + -u 1 ) <_ 0 ) ) | 
						
							| 86 | 66 83 85 | mpbir2an |  |-  0 e. ( ZZ>= ` ( 0 + -u 1 ) ) | 
						
							| 87 | 86 | a1i |  |-  ( ph -> 0 e. ( ZZ>= ` ( 0 + -u 1 ) ) ) | 
						
							| 88 |  | eluzelcn |  |-  ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> k e. CC ) | 
						
							| 89 | 88 | adantl |  |-  ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> k e. CC ) | 
						
							| 90 | 10 89 15 | sylancr |  |-  ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) = ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) ) | 
						
							| 91 |  | nn0re |  |-  ( i e. NN0 -> i e. RR ) | 
						
							| 92 | 91 | adantl |  |-  ( ( ph /\ i e. NN0 ) -> i e. RR ) | 
						
							| 93 | 1 4 5 | psergf |  |-  ( ph -> ( G ` X ) : NN0 --> CC ) | 
						
							| 94 | 93 | ffvelcdmda |  |-  ( ( ph /\ i e. NN0 ) -> ( ( G ` X ) ` i ) e. CC ) | 
						
							| 95 | 94 | abscld |  |-  ( ( ph /\ i e. NN0 ) -> ( abs ` ( ( G ` X ) ` i ) ) e. RR ) | 
						
							| 96 | 92 95 | remulcld |  |-  ( ( ph /\ i e. NN0 ) -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) e. RR ) | 
						
							| 97 | 96 | recnd |  |-  ( ( ph /\ i e. NN0 ) -> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) e. CC ) | 
						
							| 98 | 97 | fmpttd |  |-  ( ph -> ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) : NN0 --> CC ) | 
						
							| 99 | 10 88 17 | sylancr |  |-  ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( 1 + k ) = ( k + 1 ) ) | 
						
							| 100 |  | eluzp1p1 |  |-  ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( k + 1 ) e. ( ZZ>= ` ( ( 0 + -u 1 ) + 1 ) ) ) | 
						
							| 101 | 77 | oveq1i |  |-  ( ( 0 + -u 1 ) + 1 ) = ( -u 1 + 1 ) | 
						
							| 102 |  | 1pneg1e0 |  |-  ( 1 + -u 1 ) = 0 | 
						
							| 103 | 10 76 102 | addcomli |  |-  ( -u 1 + 1 ) = 0 | 
						
							| 104 | 101 103 | eqtri |  |-  ( ( 0 + -u 1 ) + 1 ) = 0 | 
						
							| 105 | 104 | fveq2i |  |-  ( ZZ>= ` ( ( 0 + -u 1 ) + 1 ) ) = ( ZZ>= ` 0 ) | 
						
							| 106 | 7 105 | eqtr4i |  |-  NN0 = ( ZZ>= ` ( ( 0 + -u 1 ) + 1 ) ) | 
						
							| 107 | 100 106 | eleqtrrdi |  |-  ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( k + 1 ) e. NN0 ) | 
						
							| 108 | 99 107 | eqeltrd |  |-  ( k e. ( ZZ>= ` ( 0 + -u 1 ) ) -> ( 1 + k ) e. NN0 ) | 
						
							| 109 |  | ffvelcdm |  |-  ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) : NN0 --> CC /\ ( 1 + k ) e. NN0 ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) e. CC ) | 
						
							| 110 | 98 108 109 | syl2an |  |-  ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) ` ( 1 + k ) ) e. CC ) | 
						
							| 111 | 90 110 | eqeltrd |  |-  ( ( ph /\ k e. ( ZZ>= ` ( 0 + -u 1 ) ) ) -> ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) e. CC ) | 
						
							| 112 | 75 87 111 | iserex |  |-  ( ph -> ( seq ( 0 + -u 1 ) ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> <-> seq 0 ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) ) | 
						
							| 113 | 74 112 | mpbid |  |-  ( ph -> seq 0 ( + , ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ) e. dom ~~> ) | 
						
							| 114 |  | 1red |  |-  ( ( ph /\ X = 0 ) -> 1 e. RR ) | 
						
							| 115 |  | neqne |  |-  ( -. X = 0 -> X =/= 0 ) | 
						
							| 116 |  | absrpcl |  |-  ( ( X e. CC /\ X =/= 0 ) -> ( abs ` X ) e. RR+ ) | 
						
							| 117 | 5 115 116 | syl2an |  |-  ( ( ph /\ -. X = 0 ) -> ( abs ` X ) e. RR+ ) | 
						
							| 118 | 117 | rprecred |  |-  ( ( ph /\ -. X = 0 ) -> ( 1 / ( abs ` X ) ) e. RR ) | 
						
							| 119 | 114 118 | ifclda |  |-  ( ph -> if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) e. RR ) | 
						
							| 120 |  | oveq1 |  |-  ( 1 = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 121 | 120 | breq2d |  |-  ( 1 = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) <-> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) ) | 
						
							| 122 |  | oveq1 |  |-  ( ( 1 / ( abs ` X ) ) = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 123 | 122 | breq2d |  |-  ( ( 1 / ( abs ` X ) ) = if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) -> ( ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) <-> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) ) | 
						
							| 124 |  | elnnuz |  |-  ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) | 
						
							| 125 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 126 | 124 125 | sylbir |  |-  ( k e. ( ZZ>= ` 1 ) -> k e. NN0 ) | 
						
							| 127 | 21 | nn0ge0d |  |-  ( ( ph /\ k e. NN0 ) -> 0 <_ ( k + 1 ) ) | 
						
							| 128 | 40 | absge0d |  |-  ( ( ph /\ k e. NN0 ) -> 0 <_ ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) | 
						
							| 129 | 35 41 127 128 | mulge0d |  |-  ( ( ph /\ k e. NN0 ) -> 0 <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) | 
						
							| 130 | 126 129 | sylan2 |  |-  ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> 0 <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> 0 <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) | 
						
							| 132 |  | oveq1 |  |-  ( X = 0 -> ( X ^ k ) = ( 0 ^ k ) ) | 
						
							| 133 |  | simpr |  |-  ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> k e. ( ZZ>= ` 1 ) ) | 
						
							| 134 | 133 124 | sylibr |  |-  ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> k e. NN ) | 
						
							| 135 | 134 | 0expd |  |-  ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( 0 ^ k ) = 0 ) | 
						
							| 136 | 132 135 | sylan9eqr |  |-  ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( X ^ k ) = 0 ) | 
						
							| 137 | 136 | oveq2d |  |-  ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) ) | 
						
							| 138 | 53 | mul01d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) = 0 ) | 
						
							| 139 | 126 138 | sylan2 |  |-  ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) = 0 ) | 
						
							| 140 | 139 | adantr |  |-  ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. 0 ) = 0 ) | 
						
							| 141 | 137 140 | eqtrd |  |-  ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) = 0 ) | 
						
							| 142 | 141 | abs00bd |  |-  ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) = 0 ) | 
						
							| 143 | 42 | recnd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) e. CC ) | 
						
							| 144 | 143 | mullidd |  |-  ( ( ph /\ k e. NN0 ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) | 
						
							| 145 | 126 144 | sylan2 |  |-  ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) | 
						
							| 146 | 145 | adantr |  |-  ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) | 
						
							| 147 | 131 142 146 | 3brtr4d |  |-  ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X = 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( 1 x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 148 |  | df-ne |  |-  ( X =/= 0 <-> -. X = 0 ) | 
						
							| 149 | 56 | abscld |  |-  ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) e. RR ) | 
						
							| 150 | 52 37 55 | mulassd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) = ( ( k + 1 ) x. ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) | 
						
							| 151 | 150 | fveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) = ( abs ` ( ( k + 1 ) x. ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) | 
						
							| 152 | 37 55 | mulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) e. CC ) | 
						
							| 153 | 52 152 | absmuld |  |-  ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( k + 1 ) x. ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) = ( ( abs ` ( k + 1 ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) | 
						
							| 154 | 35 127 | absidd |  |-  ( ( ph /\ k e. NN0 ) -> ( abs ` ( k + 1 ) ) = ( k + 1 ) ) | 
						
							| 155 | 154 | oveq1d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( abs ` ( k + 1 ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) | 
						
							| 156 | 151 153 155 | 3eqtrd |  |-  ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) | 
						
							| 157 | 149 156 | eqled |  |-  ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) | 
						
							| 158 | 157 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) | 
						
							| 159 | 5 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> X e. CC ) | 
						
							| 160 | 116 | rpreccld |  |-  ( ( X e. CC /\ X =/= 0 ) -> ( 1 / ( abs ` X ) ) e. RR+ ) | 
						
							| 161 | 159 160 | sylan |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( 1 / ( abs ` X ) ) e. RR+ ) | 
						
							| 162 | 161 | rpcnd |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( 1 / ( abs ` X ) ) e. CC ) | 
						
							| 163 | 52 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( k + 1 ) e. CC ) | 
						
							| 164 | 41 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) e. RR ) | 
						
							| 165 | 164 | recnd |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) e. CC ) | 
						
							| 166 | 162 163 165 | mul12d |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 167 | 40 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) e. CC ) | 
						
							| 168 | 5 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> X e. CC ) | 
						
							| 169 |  | simpr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> X =/= 0 ) | 
						
							| 170 | 167 168 169 | absdivd |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) ) = ( ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) / ( abs ` X ) ) ) | 
						
							| 171 | 37 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( A ` ( k + 1 ) ) e. CC ) | 
						
							| 172 | 39 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ ( k + 1 ) ) e. CC ) | 
						
							| 173 | 171 172 168 169 | divassd |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) = ( ( A ` ( k + 1 ) ) x. ( ( X ^ ( k + 1 ) ) / X ) ) ) | 
						
							| 174 | 12 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> k e. CC ) | 
						
							| 175 |  | pncan |  |-  ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) | 
						
							| 176 | 174 10 175 | sylancl |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( k + 1 ) - 1 ) = k ) | 
						
							| 177 | 176 | oveq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ ( ( k + 1 ) - 1 ) ) = ( X ^ k ) ) | 
						
							| 178 | 21 | nn0zd |  |-  ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. ZZ ) | 
						
							| 179 | 178 | adantr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( k + 1 ) e. ZZ ) | 
						
							| 180 | 168 169 179 | expm1d |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ ( ( k + 1 ) - 1 ) ) = ( ( X ^ ( k + 1 ) ) / X ) ) | 
						
							| 181 | 177 180 | eqtr3d |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( X ^ k ) = ( ( X ^ ( k + 1 ) ) / X ) ) | 
						
							| 182 | 181 | oveq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) = ( ( A ` ( k + 1 ) ) x. ( ( X ^ ( k + 1 ) ) / X ) ) ) | 
						
							| 183 | 173 182 | eqtr4d |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) = ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) | 
						
							| 184 | 183 | fveq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) / X ) ) = ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) | 
						
							| 185 | 5 | abscld |  |-  ( ph -> ( abs ` X ) e. RR ) | 
						
							| 186 | 185 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) e. RR ) | 
						
							| 187 | 186 | recnd |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) e. CC ) | 
						
							| 188 | 159 116 | sylan |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) e. RR+ ) | 
						
							| 189 | 188 | rpne0d |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` X ) =/= 0 ) | 
						
							| 190 | 165 187 189 | divrec2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) / ( abs ` X ) ) = ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) | 
						
							| 191 | 170 184 190 | 3eqtr3rd |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) = ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) | 
						
							| 192 | 191 | oveq2d |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( k + 1 ) x. ( ( 1 / ( abs ` X ) ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) | 
						
							| 193 | 166 192 | eqtrd |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) = ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ k ) ) ) ) ) | 
						
							| 194 | 158 193 | breqtrrd |  |-  ( ( ( ph /\ k e. NN0 ) /\ X =/= 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 195 | 126 194 | sylanl2 |  |-  ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ X =/= 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 196 | 148 195 | sylan2br |  |-  ( ( ( ph /\ k e. ( ZZ>= ` 1 ) ) /\ -. X = 0 ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( ( 1 / ( abs ` X ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 197 | 121 123 147 196 | ifbothda |  |-  ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 198 | 51 | fveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( abs ` ( H ` k ) ) = ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) ) | 
						
							| 199 | 126 198 | sylan2 |  |-  ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( H ` k ) ) = ( abs ` ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( X ^ k ) ) ) ) | 
						
							| 200 | 34 | oveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 201 | 126 200 | sylan2 |  |-  ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) ) = ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( k + 1 ) x. ( abs ` ( ( A ` ( k + 1 ) ) x. ( X ^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 202 | 197 199 201 | 3brtr4d |  |-  ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( H ` k ) ) <_ ( if ( X = 0 , 1 , ( 1 / ( abs ` X ) ) ) x. ( ( ( i e. NN0 |-> ( i x. ( abs ` ( ( G ` X ) ` i ) ) ) ) shift -u 1 ) ` k ) ) ) | 
						
							| 203 | 7 9 43 57 113 119 202 | cvgcmpce |  |-  ( ph -> seq 0 ( + , H ) e. dom ~~> ) |