| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvrass.b |
|- B = ( Base ` R ) |
| 2 |
|
dvrass.o |
|- U = ( Unit ` R ) |
| 3 |
|
dvrass.d |
|- ./ = ( /r ` R ) |
| 4 |
|
dvrass.t |
|- .x. = ( .r ` R ) |
| 5 |
|
simp1 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> R e. Ring ) |
| 6 |
|
simp2 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> X e. B ) |
| 7 |
1 2
|
unitcl |
|- ( Y e. U -> Y e. B ) |
| 8 |
7
|
3ad2ant3 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> Y e. B ) |
| 9 |
|
simp3 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> Y e. U ) |
| 10 |
1 2 3 4
|
dvrass |
|- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Y e. U ) ) -> ( ( X .x. Y ) ./ Y ) = ( X .x. ( Y ./ Y ) ) ) |
| 11 |
5 6 8 9 10
|
syl13anc |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X .x. Y ) ./ Y ) = ( X .x. ( Y ./ Y ) ) ) |
| 12 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 13 |
2 3 12
|
dvrid |
|- ( ( R e. Ring /\ Y e. U ) -> ( Y ./ Y ) = ( 1r ` R ) ) |
| 14 |
13
|
3adant2 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( Y ./ Y ) = ( 1r ` R ) ) |
| 15 |
14
|
oveq2d |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X .x. ( Y ./ Y ) ) = ( X .x. ( 1r ` R ) ) ) |
| 16 |
1 4 12
|
ringridm |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. ( 1r ` R ) ) = X ) |
| 17 |
16
|
3adant3 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X .x. ( 1r ` R ) ) = X ) |
| 18 |
11 15 17
|
3eqtrd |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X .x. Y ) ./ Y ) = X ) |