| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvrcl.b |
|- B = ( Base ` R ) |
| 2 |
|
dvrcl.o |
|- U = ( Unit ` R ) |
| 3 |
|
dvrcl.d |
|- ./ = ( /r ` R ) |
| 4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 5 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 6 |
1 4 2 5 3
|
dvrval |
|- ( ( X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 7 |
6
|
3adant1 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 8 |
2 5 1
|
ringinvcl |
|- ( ( R e. Ring /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. B ) |
| 9 |
8
|
3adant2 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. B ) |
| 10 |
1 4
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ ( ( invr ` R ) ` Y ) e. B ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) e. B ) |
| 11 |
9 10
|
syld3an3 |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) e. B ) |
| 12 |
7 11
|
eqeltrd |
|- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X ./ Y ) e. B ) |