Step |
Hyp |
Ref |
Expression |
1 |
|
dvrecg.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvrecg.a |
|- ( ph -> A e. CC ) |
3 |
|
dvrecg.b |
|- ( ( ph /\ x e. X ) -> B e. ( CC \ { 0 } ) ) |
4 |
|
dvrecg.c |
|- ( ( ph /\ x e. X ) -> C e. V ) |
5 |
|
dvrecg.db |
|- ( ph -> ( S _D ( x e. X |-> B ) ) = ( x e. X |-> C ) ) |
6 |
|
cnelprrecn |
|- CC e. { RR , CC } |
7 |
6
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
8 |
2
|
adantr |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> A e. CC ) |
9 |
|
eldifi |
|- ( y e. ( CC \ { 0 } ) -> y e. CC ) |
10 |
9
|
adantl |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> y e. CC ) |
11 |
|
eldifsni |
|- ( y e. ( CC \ { 0 } ) -> y =/= 0 ) |
12 |
11
|
adantl |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> y =/= 0 ) |
13 |
8 10 12
|
divcld |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( A / y ) e. CC ) |
14 |
10
|
sqcld |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( y ^ 2 ) e. CC ) |
15 |
|
2z |
|- 2 e. ZZ |
16 |
15
|
a1i |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> 2 e. ZZ ) |
17 |
10 12 16
|
expne0d |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( y ^ 2 ) =/= 0 ) |
18 |
8 14 17
|
divcld |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( A / ( y ^ 2 ) ) e. CC ) |
19 |
18
|
negcld |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> -u ( A / ( y ^ 2 ) ) e. CC ) |
20 |
|
dvrec |
|- ( A e. CC -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( A / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( A / ( y ^ 2 ) ) ) ) |
21 |
2 20
|
syl |
|- ( ph -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( A / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( A / ( y ^ 2 ) ) ) ) |
22 |
|
oveq2 |
|- ( y = B -> ( A / y ) = ( A / B ) ) |
23 |
|
oveq1 |
|- ( y = B -> ( y ^ 2 ) = ( B ^ 2 ) ) |
24 |
23
|
oveq2d |
|- ( y = B -> ( A / ( y ^ 2 ) ) = ( A / ( B ^ 2 ) ) ) |
25 |
24
|
negeqd |
|- ( y = B -> -u ( A / ( y ^ 2 ) ) = -u ( A / ( B ^ 2 ) ) ) |
26 |
1 7 3 4 13 19 5 21 22 25
|
dvmptco |
|- ( ph -> ( S _D ( x e. X |-> ( A / B ) ) ) = ( x e. X |-> ( -u ( A / ( B ^ 2 ) ) x. C ) ) ) |
27 |
2
|
adantr |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
28 |
|
eldifi |
|- ( B e. ( CC \ { 0 } ) -> B e. CC ) |
29 |
3 28
|
syl |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
30 |
29
|
sqcld |
|- ( ( ph /\ x e. X ) -> ( B ^ 2 ) e. CC ) |
31 |
|
eldifsn |
|- ( B e. ( CC \ { 0 } ) <-> ( B e. CC /\ B =/= 0 ) ) |
32 |
3 31
|
sylib |
|- ( ( ph /\ x e. X ) -> ( B e. CC /\ B =/= 0 ) ) |
33 |
32
|
simprd |
|- ( ( ph /\ x e. X ) -> B =/= 0 ) |
34 |
15
|
a1i |
|- ( ( ph /\ x e. X ) -> 2 e. ZZ ) |
35 |
29 33 34
|
expne0d |
|- ( ( ph /\ x e. X ) -> ( B ^ 2 ) =/= 0 ) |
36 |
27 30 35
|
divcld |
|- ( ( ph /\ x e. X ) -> ( A / ( B ^ 2 ) ) e. CC ) |
37 |
1 29 4 5
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
38 |
36 37
|
mulneg1d |
|- ( ( ph /\ x e. X ) -> ( -u ( A / ( B ^ 2 ) ) x. C ) = -u ( ( A / ( B ^ 2 ) ) x. C ) ) |
39 |
27 37 30 35
|
div23d |
|- ( ( ph /\ x e. X ) -> ( ( A x. C ) / ( B ^ 2 ) ) = ( ( A / ( B ^ 2 ) ) x. C ) ) |
40 |
39
|
eqcomd |
|- ( ( ph /\ x e. X ) -> ( ( A / ( B ^ 2 ) ) x. C ) = ( ( A x. C ) / ( B ^ 2 ) ) ) |
41 |
40
|
negeqd |
|- ( ( ph /\ x e. X ) -> -u ( ( A / ( B ^ 2 ) ) x. C ) = -u ( ( A x. C ) / ( B ^ 2 ) ) ) |
42 |
38 41
|
eqtrd |
|- ( ( ph /\ x e. X ) -> ( -u ( A / ( B ^ 2 ) ) x. C ) = -u ( ( A x. C ) / ( B ^ 2 ) ) ) |
43 |
42
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( -u ( A / ( B ^ 2 ) ) x. C ) ) = ( x e. X |-> -u ( ( A x. C ) / ( B ^ 2 ) ) ) ) |
44 |
26 43
|
eqtrd |
|- ( ph -> ( S _D ( x e. X |-> ( A / B ) ) ) = ( x e. X |-> -u ( ( A x. C ) / ( B ^ 2 ) ) ) ) |