| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvrecg.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvrecg.a |
|- ( ph -> A e. CC ) |
| 3 |
|
dvrecg.b |
|- ( ( ph /\ x e. X ) -> B e. ( CC \ { 0 } ) ) |
| 4 |
|
dvrecg.c |
|- ( ( ph /\ x e. X ) -> C e. V ) |
| 5 |
|
dvrecg.db |
|- ( ph -> ( S _D ( x e. X |-> B ) ) = ( x e. X |-> C ) ) |
| 6 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 7 |
6
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
| 8 |
2
|
adantr |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> A e. CC ) |
| 9 |
|
eldifi |
|- ( y e. ( CC \ { 0 } ) -> y e. CC ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> y e. CC ) |
| 11 |
|
eldifsni |
|- ( y e. ( CC \ { 0 } ) -> y =/= 0 ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> y =/= 0 ) |
| 13 |
8 10 12
|
divcld |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( A / y ) e. CC ) |
| 14 |
10
|
sqcld |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( y ^ 2 ) e. CC ) |
| 15 |
|
2z |
|- 2 e. ZZ |
| 16 |
15
|
a1i |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> 2 e. ZZ ) |
| 17 |
10 12 16
|
expne0d |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( y ^ 2 ) =/= 0 ) |
| 18 |
8 14 17
|
divcld |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( A / ( y ^ 2 ) ) e. CC ) |
| 19 |
18
|
negcld |
|- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> -u ( A / ( y ^ 2 ) ) e. CC ) |
| 20 |
|
dvrec |
|- ( A e. CC -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( A / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( A / ( y ^ 2 ) ) ) ) |
| 21 |
2 20
|
syl |
|- ( ph -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( A / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( A / ( y ^ 2 ) ) ) ) |
| 22 |
|
oveq2 |
|- ( y = B -> ( A / y ) = ( A / B ) ) |
| 23 |
|
oveq1 |
|- ( y = B -> ( y ^ 2 ) = ( B ^ 2 ) ) |
| 24 |
23
|
oveq2d |
|- ( y = B -> ( A / ( y ^ 2 ) ) = ( A / ( B ^ 2 ) ) ) |
| 25 |
24
|
negeqd |
|- ( y = B -> -u ( A / ( y ^ 2 ) ) = -u ( A / ( B ^ 2 ) ) ) |
| 26 |
1 7 3 4 13 19 5 21 22 25
|
dvmptco |
|- ( ph -> ( S _D ( x e. X |-> ( A / B ) ) ) = ( x e. X |-> ( -u ( A / ( B ^ 2 ) ) x. C ) ) ) |
| 27 |
2
|
adantr |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 28 |
|
eldifi |
|- ( B e. ( CC \ { 0 } ) -> B e. CC ) |
| 29 |
3 28
|
syl |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
| 30 |
29
|
sqcld |
|- ( ( ph /\ x e. X ) -> ( B ^ 2 ) e. CC ) |
| 31 |
|
eldifsn |
|- ( B e. ( CC \ { 0 } ) <-> ( B e. CC /\ B =/= 0 ) ) |
| 32 |
3 31
|
sylib |
|- ( ( ph /\ x e. X ) -> ( B e. CC /\ B =/= 0 ) ) |
| 33 |
32
|
simprd |
|- ( ( ph /\ x e. X ) -> B =/= 0 ) |
| 34 |
15
|
a1i |
|- ( ( ph /\ x e. X ) -> 2 e. ZZ ) |
| 35 |
29 33 34
|
expne0d |
|- ( ( ph /\ x e. X ) -> ( B ^ 2 ) =/= 0 ) |
| 36 |
27 30 35
|
divcld |
|- ( ( ph /\ x e. X ) -> ( A / ( B ^ 2 ) ) e. CC ) |
| 37 |
1 29 4 5
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
| 38 |
36 37
|
mulneg1d |
|- ( ( ph /\ x e. X ) -> ( -u ( A / ( B ^ 2 ) ) x. C ) = -u ( ( A / ( B ^ 2 ) ) x. C ) ) |
| 39 |
27 37 30 35
|
div23d |
|- ( ( ph /\ x e. X ) -> ( ( A x. C ) / ( B ^ 2 ) ) = ( ( A / ( B ^ 2 ) ) x. C ) ) |
| 40 |
39
|
eqcomd |
|- ( ( ph /\ x e. X ) -> ( ( A / ( B ^ 2 ) ) x. C ) = ( ( A x. C ) / ( B ^ 2 ) ) ) |
| 41 |
40
|
negeqd |
|- ( ( ph /\ x e. X ) -> -u ( ( A / ( B ^ 2 ) ) x. C ) = -u ( ( A x. C ) / ( B ^ 2 ) ) ) |
| 42 |
38 41
|
eqtrd |
|- ( ( ph /\ x e. X ) -> ( -u ( A / ( B ^ 2 ) ) x. C ) = -u ( ( A x. C ) / ( B ^ 2 ) ) ) |
| 43 |
42
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( -u ( A / ( B ^ 2 ) ) x. C ) ) = ( x e. X |-> -u ( ( A x. C ) / ( B ^ 2 ) ) ) ) |
| 44 |
26 43
|
eqtrd |
|- ( ph -> ( S _D ( x e. X |-> ( A / B ) ) ) = ( x e. X |-> -u ( ( A x. C ) / ( B ^ 2 ) ) ) ) |