Step |
Hyp |
Ref |
Expression |
1 |
|
dfrelog |
|- ( log |` RR+ ) = `' ( exp |` RR ) |
2 |
1
|
oveq2i |
|- ( RR _D ( log |` RR+ ) ) = ( RR _D `' ( exp |` RR ) ) |
3 |
|
reeff1o |
|- ( exp |` RR ) : RR -1-1-onto-> RR+ |
4 |
|
f1of |
|- ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR --> RR+ ) |
5 |
3 4
|
ax-mp |
|- ( exp |` RR ) : RR --> RR+ |
6 |
|
rpssre |
|- RR+ C_ RR |
7 |
|
fss |
|- ( ( ( exp |` RR ) : RR --> RR+ /\ RR+ C_ RR ) -> ( exp |` RR ) : RR --> RR ) |
8 |
5 6 7
|
mp2an |
|- ( exp |` RR ) : RR --> RR |
9 |
|
ax-resscn |
|- RR C_ CC |
10 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
11 |
|
rescncf |
|- ( RR C_ CC -> ( exp e. ( CC -cn-> CC ) -> ( exp |` RR ) e. ( RR -cn-> CC ) ) ) |
12 |
9 10 11
|
mp2 |
|- ( exp |` RR ) e. ( RR -cn-> CC ) |
13 |
|
cncffvrn |
|- ( ( RR C_ CC /\ ( exp |` RR ) e. ( RR -cn-> CC ) ) -> ( ( exp |` RR ) e. ( RR -cn-> RR ) <-> ( exp |` RR ) : RR --> RR ) ) |
14 |
9 12 13
|
mp2an |
|- ( ( exp |` RR ) e. ( RR -cn-> RR ) <-> ( exp |` RR ) : RR --> RR ) |
15 |
8 14
|
mpbir |
|- ( exp |` RR ) e. ( RR -cn-> RR ) |
16 |
15
|
a1i |
|- ( T. -> ( exp |` RR ) e. ( RR -cn-> RR ) ) |
17 |
|
reelprrecn |
|- RR e. { RR , CC } |
18 |
|
eff |
|- exp : CC --> CC |
19 |
|
ssid |
|- CC C_ CC |
20 |
|
dvef |
|- ( CC _D exp ) = exp |
21 |
20
|
dmeqi |
|- dom ( CC _D exp ) = dom exp |
22 |
18
|
fdmi |
|- dom exp = CC |
23 |
21 22
|
eqtri |
|- dom ( CC _D exp ) = CC |
24 |
9 23
|
sseqtrri |
|- RR C_ dom ( CC _D exp ) |
25 |
|
dvres3 |
|- ( ( ( RR e. { RR , CC } /\ exp : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D exp ) ) ) -> ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) ) |
26 |
17 18 19 24 25
|
mp4an |
|- ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) |
27 |
20
|
reseq1i |
|- ( ( CC _D exp ) |` RR ) = ( exp |` RR ) |
28 |
26 27
|
eqtri |
|- ( RR _D ( exp |` RR ) ) = ( exp |` RR ) |
29 |
28
|
dmeqi |
|- dom ( RR _D ( exp |` RR ) ) = dom ( exp |` RR ) |
30 |
5
|
fdmi |
|- dom ( exp |` RR ) = RR |
31 |
29 30
|
eqtri |
|- dom ( RR _D ( exp |` RR ) ) = RR |
32 |
31
|
a1i |
|- ( T. -> dom ( RR _D ( exp |` RR ) ) = RR ) |
33 |
|
0nrp |
|- -. 0 e. RR+ |
34 |
28
|
rneqi |
|- ran ( RR _D ( exp |` RR ) ) = ran ( exp |` RR ) |
35 |
|
f1ofo |
|- ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR -onto-> RR+ ) |
36 |
|
forn |
|- ( ( exp |` RR ) : RR -onto-> RR+ -> ran ( exp |` RR ) = RR+ ) |
37 |
3 35 36
|
mp2b |
|- ran ( exp |` RR ) = RR+ |
38 |
34 37
|
eqtri |
|- ran ( RR _D ( exp |` RR ) ) = RR+ |
39 |
38
|
eleq2i |
|- ( 0 e. ran ( RR _D ( exp |` RR ) ) <-> 0 e. RR+ ) |
40 |
33 39
|
mtbir |
|- -. 0 e. ran ( RR _D ( exp |` RR ) ) |
41 |
40
|
a1i |
|- ( T. -> -. 0 e. ran ( RR _D ( exp |` RR ) ) ) |
42 |
3
|
a1i |
|- ( T. -> ( exp |` RR ) : RR -1-1-onto-> RR+ ) |
43 |
16 32 41 42
|
dvcnvre |
|- ( T. -> ( RR _D `' ( exp |` RR ) ) = ( x e. RR+ |-> ( 1 / ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) ) ) ) |
44 |
43
|
mptru |
|- ( RR _D `' ( exp |` RR ) ) = ( x e. RR+ |-> ( 1 / ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) ) ) |
45 |
28
|
fveq1i |
|- ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) = ( ( exp |` RR ) ` ( `' ( exp |` RR ) ` x ) ) |
46 |
|
f1ocnvfv2 |
|- ( ( ( exp |` RR ) : RR -1-1-onto-> RR+ /\ x e. RR+ ) -> ( ( exp |` RR ) ` ( `' ( exp |` RR ) ` x ) ) = x ) |
47 |
3 46
|
mpan |
|- ( x e. RR+ -> ( ( exp |` RR ) ` ( `' ( exp |` RR ) ` x ) ) = x ) |
48 |
45 47
|
eqtrid |
|- ( x e. RR+ -> ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) = x ) |
49 |
48
|
oveq2d |
|- ( x e. RR+ -> ( 1 / ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) ) = ( 1 / x ) ) |
50 |
49
|
mpteq2ia |
|- ( x e. RR+ |-> ( 1 / ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
51 |
44 50
|
eqtri |
|- ( RR _D `' ( exp |` RR ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
52 |
2 51
|
eqtri |
|- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |