| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvreq1.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | dvreq1.o |  |-  U = ( Unit ` R ) | 
						
							| 3 |  | dvreq1.d |  |-  ./ = ( /r ` R ) | 
						
							| 4 |  | dvreq1.t |  |-  .1. = ( 1r ` R ) | 
						
							| 5 |  | oveq1 |  |-  ( ( X ./ Y ) = .1. -> ( ( X ./ Y ) ( .r ` R ) Y ) = ( .1. ( .r ` R ) Y ) ) | 
						
							| 6 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 7 | 1 2 3 6 | dvrcan1 |  |-  ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) ( .r ` R ) Y ) = X ) | 
						
							| 8 | 1 2 | unitcl |  |-  ( Y e. U -> Y e. B ) | 
						
							| 9 | 1 6 4 | ringlidm |  |-  ( ( R e. Ring /\ Y e. B ) -> ( .1. ( .r ` R ) Y ) = Y ) | 
						
							| 10 | 8 9 | sylan2 |  |-  ( ( R e. Ring /\ Y e. U ) -> ( .1. ( .r ` R ) Y ) = Y ) | 
						
							| 11 | 10 | 3adant2 |  |-  ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( .1. ( .r ` R ) Y ) = Y ) | 
						
							| 12 | 7 11 | eqeq12d |  |-  ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( ( X ./ Y ) ( .r ` R ) Y ) = ( .1. ( .r ` R ) Y ) <-> X = Y ) ) | 
						
							| 13 | 5 12 | imbitrid |  |-  ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) = .1. -> X = Y ) ) | 
						
							| 14 | 2 3 4 | dvrid |  |-  ( ( R e. Ring /\ Y e. U ) -> ( Y ./ Y ) = .1. ) | 
						
							| 15 | 14 | 3adant2 |  |-  ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( Y ./ Y ) = .1. ) | 
						
							| 16 |  | oveq1 |  |-  ( X = Y -> ( X ./ Y ) = ( Y ./ Y ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( X = Y -> ( ( X ./ Y ) = .1. <-> ( Y ./ Y ) = .1. ) ) | 
						
							| 18 | 15 17 | syl5ibrcom |  |-  ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X = Y -> ( X ./ Y ) = .1. ) ) | 
						
							| 19 | 13 18 | impbid |  |-  ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) = .1. <-> X = Y ) ) |