| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
|- Rel ( ( S _D F ) |` B ) |
| 2 |
1
|
a1i |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> Rel ( ( S _D F ) |` B ) ) |
| 3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 4 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
| 5 |
|
eqid |
|- ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 6 |
|
simp1l |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> S C_ CC ) |
| 7 |
|
simp1r |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> F : A --> CC ) |
| 8 |
|
simp2l |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> A C_ S ) |
| 9 |
|
simp2r |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> B C_ S ) |
| 10 |
|
simp3r |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> x ( S _D F ) y ) |
| 11 |
6 7 8
|
dvcl |
|- ( ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) /\ x ( S _D F ) y ) -> y e. CC ) |
| 12 |
10 11
|
mpdan |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> y e. CC ) |
| 13 |
|
simp3l |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> x e. B ) |
| 14 |
3 4 5 6 7 8 9 12 10 13
|
dvres2lem |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> x ( B _D ( F |` B ) ) y ) |
| 15 |
14
|
3expia |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( ( x e. B /\ x ( S _D F ) y ) -> x ( B _D ( F |` B ) ) y ) ) |
| 16 |
|
vex |
|- y e. _V |
| 17 |
16
|
brresi |
|- ( x ( ( S _D F ) |` B ) y <-> ( x e. B /\ x ( S _D F ) y ) ) |
| 18 |
|
df-br |
|- ( x ( ( S _D F ) |` B ) y <-> <. x , y >. e. ( ( S _D F ) |` B ) ) |
| 19 |
17 18
|
bitr3i |
|- ( ( x e. B /\ x ( S _D F ) y ) <-> <. x , y >. e. ( ( S _D F ) |` B ) ) |
| 20 |
|
df-br |
|- ( x ( B _D ( F |` B ) ) y <-> <. x , y >. e. ( B _D ( F |` B ) ) ) |
| 21 |
15 19 20
|
3imtr3g |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( <. x , y >. e. ( ( S _D F ) |` B ) -> <. x , y >. e. ( B _D ( F |` B ) ) ) ) |
| 22 |
2 21
|
relssdv |
|- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( ( S _D F ) |` B ) C_ ( B _D ( F |` B ) ) ) |