Step |
Hyp |
Ref |
Expression |
1 |
|
reldv |
|- Rel ( S _D ( F |` S ) ) |
2 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
3 |
2
|
ad2antrr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ CC ) |
4 |
|
simplr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> F : A --> CC ) |
5 |
|
simprr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ dom ( CC _D F ) ) |
6 |
|
ssidd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> CC C_ CC ) |
7 |
|
simprl |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> A C_ CC ) |
8 |
6 4 7
|
dvbss |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( CC _D F ) C_ A ) |
9 |
5 8
|
sstrd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ A ) |
10 |
4 9
|
fssresd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( F |` S ) : S --> CC ) |
11 |
|
ssidd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ S ) |
12 |
3 10 11
|
dvbss |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( S _D ( F |` S ) ) C_ S ) |
13 |
|
ssdmres |
|- ( S C_ dom ( CC _D F ) <-> dom ( ( CC _D F ) |` S ) = S ) |
14 |
5 13
|
sylib |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( ( CC _D F ) |` S ) = S ) |
15 |
12 14
|
sseqtrrd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( S _D ( F |` S ) ) C_ dom ( ( CC _D F ) |` S ) ) |
16 |
|
relssres |
|- ( ( Rel ( S _D ( F |` S ) ) /\ dom ( S _D ( F |` S ) ) C_ dom ( ( CC _D F ) |` S ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( S _D ( F |` S ) ) ) |
17 |
1 15 16
|
sylancr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( S _D ( F |` S ) ) ) |
18 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D ( F |` S ) ) : dom ( S _D ( F |` S ) ) --> CC ) |
19 |
18
|
ad2antrr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( S _D ( F |` S ) ) : dom ( S _D ( F |` S ) ) --> CC ) |
20 |
19
|
ffund |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> Fun ( S _D ( F |` S ) ) ) |
21 |
|
dvres2 |
|- ( ( ( CC C_ CC /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ CC ) ) -> ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) |
22 |
6 4 7 3 21
|
syl22anc |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) |
23 |
|
funssres |
|- ( ( Fun ( S _D ( F |` S ) ) /\ ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( ( CC _D F ) |` S ) ) |
24 |
20 22 23
|
syl2anc |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( ( CC _D F ) |` S ) ) |
25 |
17 24
|
eqtr3d |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( S _D ( F |` S ) ) = ( ( CC _D F ) |` S ) ) |