| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reldv |
|- Rel ( S _D ( F |` S ) ) |
| 2 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 3 |
2
|
ad2antrr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ CC ) |
| 4 |
|
simplr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> F : A --> CC ) |
| 5 |
|
simprr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ dom ( CC _D F ) ) |
| 6 |
|
ssidd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> CC C_ CC ) |
| 7 |
|
simprl |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> A C_ CC ) |
| 8 |
6 4 7
|
dvbss |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( CC _D F ) C_ A ) |
| 9 |
5 8
|
sstrd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ A ) |
| 10 |
4 9
|
fssresd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( F |` S ) : S --> CC ) |
| 11 |
|
ssidd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ S ) |
| 12 |
3 10 11
|
dvbss |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( S _D ( F |` S ) ) C_ S ) |
| 13 |
|
ssdmres |
|- ( S C_ dom ( CC _D F ) <-> dom ( ( CC _D F ) |` S ) = S ) |
| 14 |
5 13
|
sylib |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( ( CC _D F ) |` S ) = S ) |
| 15 |
12 14
|
sseqtrrd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( S _D ( F |` S ) ) C_ dom ( ( CC _D F ) |` S ) ) |
| 16 |
|
relssres |
|- ( ( Rel ( S _D ( F |` S ) ) /\ dom ( S _D ( F |` S ) ) C_ dom ( ( CC _D F ) |` S ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( S _D ( F |` S ) ) ) |
| 17 |
1 15 16
|
sylancr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( S _D ( F |` S ) ) ) |
| 18 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D ( F |` S ) ) : dom ( S _D ( F |` S ) ) --> CC ) |
| 19 |
18
|
ad2antrr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( S _D ( F |` S ) ) : dom ( S _D ( F |` S ) ) --> CC ) |
| 20 |
19
|
ffund |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> Fun ( S _D ( F |` S ) ) ) |
| 21 |
|
dvres2 |
|- ( ( ( CC C_ CC /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ CC ) ) -> ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) |
| 22 |
6 4 7 3 21
|
syl22anc |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) |
| 23 |
|
funssres |
|- ( ( Fun ( S _D ( F |` S ) ) /\ ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( ( CC _D F ) |` S ) ) |
| 24 |
20 22 23
|
syl2anc |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( ( CC _D F ) |` S ) ) |
| 25 |
17 24
|
eqtr3d |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( S _D ( F |` S ) ) = ( ( CC _D F ) |` S ) ) |