Step |
Hyp |
Ref |
Expression |
1 |
|
dvres3a.j |
|- J = ( TopOpen ` CCfld ) |
2 |
|
reldv |
|- Rel ( S _D ( F |` S ) ) |
3 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
4 |
3
|
ad2antrr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> S C_ CC ) |
5 |
|
simplr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> F : A --> CC ) |
6 |
|
inss2 |
|- ( S i^i A ) C_ A |
7 |
|
fssres |
|- ( ( F : A --> CC /\ ( S i^i A ) C_ A ) -> ( F |` ( S i^i A ) ) : ( S i^i A ) --> CC ) |
8 |
5 6 7
|
sylancl |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( F |` ( S i^i A ) ) : ( S i^i A ) --> CC ) |
9 |
|
rescom |
|- ( ( F |` A ) |` S ) = ( ( F |` S ) |` A ) |
10 |
|
resres |
|- ( ( F |` S ) |` A ) = ( F |` ( S i^i A ) ) |
11 |
9 10
|
eqtri |
|- ( ( F |` A ) |` S ) = ( F |` ( S i^i A ) ) |
12 |
|
ffn |
|- ( F : A --> CC -> F Fn A ) |
13 |
|
fnresdm |
|- ( F Fn A -> ( F |` A ) = F ) |
14 |
5 12 13
|
3syl |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( F |` A ) = F ) |
15 |
14
|
reseq1d |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( ( F |` A ) |` S ) = ( F |` S ) ) |
16 |
11 15
|
eqtr3id |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( F |` ( S i^i A ) ) = ( F |` S ) ) |
17 |
16
|
feq1d |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( ( F |` ( S i^i A ) ) : ( S i^i A ) --> CC <-> ( F |` S ) : ( S i^i A ) --> CC ) ) |
18 |
8 17
|
mpbid |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( F |` S ) : ( S i^i A ) --> CC ) |
19 |
|
inss1 |
|- ( S i^i A ) C_ S |
20 |
19
|
a1i |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( S i^i A ) C_ S ) |
21 |
4 18 20
|
dvbss |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> dom ( S _D ( F |` S ) ) C_ ( S i^i A ) ) |
22 |
|
dmres |
|- dom ( ( CC _D F ) |` S ) = ( S i^i dom ( CC _D F ) ) |
23 |
|
simprr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> dom ( CC _D F ) = A ) |
24 |
23
|
ineq2d |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( S i^i dom ( CC _D F ) ) = ( S i^i A ) ) |
25 |
22 24
|
syl5eq |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> dom ( ( CC _D F ) |` S ) = ( S i^i A ) ) |
26 |
21 25
|
sseqtrrd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> dom ( S _D ( F |` S ) ) C_ dom ( ( CC _D F ) |` S ) ) |
27 |
|
relssres |
|- ( ( Rel ( S _D ( F |` S ) ) /\ dom ( S _D ( F |` S ) ) C_ dom ( ( CC _D F ) |` S ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( S _D ( F |` S ) ) ) |
28 |
2 26 27
|
sylancr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( S _D ( F |` S ) ) ) |
29 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D ( F |` S ) ) : dom ( S _D ( F |` S ) ) --> CC ) |
30 |
29
|
ad2antrr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( S _D ( F |` S ) ) : dom ( S _D ( F |` S ) ) --> CC ) |
31 |
30
|
ffund |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> Fun ( S _D ( F |` S ) ) ) |
32 |
|
ssidd |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> CC C_ CC ) |
33 |
1
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
34 |
|
simprl |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> A e. J ) |
35 |
|
toponss |
|- ( ( J e. ( TopOn ` CC ) /\ A e. J ) -> A C_ CC ) |
36 |
33 34 35
|
sylancr |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> A C_ CC ) |
37 |
|
dvres2 |
|- ( ( ( CC C_ CC /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ CC ) ) -> ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) |
38 |
32 5 36 4 37
|
syl22anc |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) |
39 |
|
funssres |
|- ( ( Fun ( S _D ( F |` S ) ) /\ ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( ( CC _D F ) |` S ) ) |
40 |
31 38 39
|
syl2anc |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( ( CC _D F ) |` S ) ) |
41 |
28 40
|
eqtr3d |
|- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( S _D ( F |` S ) ) = ( ( CC _D F ) |` S ) ) |