Step |
Hyp |
Ref |
Expression |
1 |
|
dvresntr.s |
|- ( ph -> S C_ CC ) |
2 |
|
dvresntr.x |
|- ( ph -> X C_ S ) |
3 |
|
dvresntr.f |
|- ( ph -> F : X --> CC ) |
4 |
|
dvresntr.j |
|- J = ( K |`t S ) |
5 |
|
dvresntr.k |
|- K = ( TopOpen ` CCfld ) |
6 |
|
dvresntr.i |
|- ( ph -> ( ( int ` J ) ` X ) = Y ) |
7 |
5 4
|
dvres |
|- ( ( ( S C_ CC /\ F : X --> CC ) /\ ( X C_ S /\ X C_ S ) ) -> ( S _D ( F |` X ) ) = ( ( S _D F ) |` ( ( int ` J ) ` X ) ) ) |
8 |
1 3 2 2 7
|
syl22anc |
|- ( ph -> ( S _D ( F |` X ) ) = ( ( S _D F ) |` ( ( int ` J ) ` X ) ) ) |
9 |
|
ffn |
|- ( F : X --> CC -> F Fn X ) |
10 |
|
fnresdm |
|- ( F Fn X -> ( F |` X ) = F ) |
11 |
3 9 10
|
3syl |
|- ( ph -> ( F |` X ) = F ) |
12 |
11
|
oveq2d |
|- ( ph -> ( S _D ( F |` X ) ) = ( S _D F ) ) |
13 |
5
|
cnfldtopon |
|- K e. ( TopOn ` CC ) |
14 |
|
resttopon |
|- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
15 |
13 1 14
|
sylancr |
|- ( ph -> ( K |`t S ) e. ( TopOn ` S ) ) |
16 |
4 15
|
eqeltrid |
|- ( ph -> J e. ( TopOn ` S ) ) |
17 |
|
topontop |
|- ( J e. ( TopOn ` S ) -> J e. Top ) |
18 |
16 17
|
syl |
|- ( ph -> J e. Top ) |
19 |
|
toponuni |
|- ( J e. ( TopOn ` S ) -> S = U. J ) |
20 |
16 19
|
syl |
|- ( ph -> S = U. J ) |
21 |
2 20
|
sseqtrd |
|- ( ph -> X C_ U. J ) |
22 |
|
eqid |
|- U. J = U. J |
23 |
22
|
ntridm |
|- ( ( J e. Top /\ X C_ U. J ) -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` X ) ) |
24 |
18 21 23
|
syl2anc |
|- ( ph -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` X ) ) |
25 |
6
|
fveq2d |
|- ( ph -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` Y ) ) |
26 |
24 25 6
|
3eqtr3d |
|- ( ph -> ( ( int ` J ) ` Y ) = Y ) |
27 |
26
|
reseq2d |
|- ( ph -> ( ( S _D F ) |` ( ( int ` J ) ` Y ) ) = ( ( S _D F ) |` Y ) ) |
28 |
22
|
ntrss2 |
|- ( ( J e. Top /\ X C_ U. J ) -> ( ( int ` J ) ` X ) C_ X ) |
29 |
18 21 28
|
syl2anc |
|- ( ph -> ( ( int ` J ) ` X ) C_ X ) |
30 |
6 29
|
eqsstrrd |
|- ( ph -> Y C_ X ) |
31 |
30 2
|
sstrd |
|- ( ph -> Y C_ S ) |
32 |
5 4
|
dvres |
|- ( ( ( S C_ CC /\ F : X --> CC ) /\ ( X C_ S /\ Y C_ S ) ) -> ( S _D ( F |` Y ) ) = ( ( S _D F ) |` ( ( int ` J ) ` Y ) ) ) |
33 |
1 3 2 31 32
|
syl22anc |
|- ( ph -> ( S _D ( F |` Y ) ) = ( ( S _D F ) |` ( ( int ` J ) ` Y ) ) ) |
34 |
6
|
reseq2d |
|- ( ph -> ( ( S _D F ) |` ( ( int ` J ) ` X ) ) = ( ( S _D F ) |` Y ) ) |
35 |
27 33 34
|
3eqtr4rd |
|- ( ph -> ( ( S _D F ) |` ( ( int ` J ) ` X ) ) = ( S _D ( F |` Y ) ) ) |
36 |
8 12 35
|
3eqtr3d |
|- ( ph -> ( S _D F ) = ( S _D ( F |` Y ) ) ) |