Step |
Hyp |
Ref |
Expression |
1 |
|
dvrval.b |
|- B = ( Base ` R ) |
2 |
|
dvrval.t |
|- .x. = ( .r ` R ) |
3 |
|
dvrval.u |
|- U = ( Unit ` R ) |
4 |
|
dvrval.i |
|- I = ( invr ` R ) |
5 |
|
dvrval.d |
|- ./ = ( /r ` R ) |
6 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
7 |
6 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
8 |
|
fveq2 |
|- ( r = R -> ( Unit ` r ) = ( Unit ` R ) ) |
9 |
8 3
|
eqtr4di |
|- ( r = R -> ( Unit ` r ) = U ) |
10 |
|
fveq2 |
|- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
11 |
10 2
|
eqtr4di |
|- ( r = R -> ( .r ` r ) = .x. ) |
12 |
|
eqidd |
|- ( r = R -> x = x ) |
13 |
|
fveq2 |
|- ( r = R -> ( invr ` r ) = ( invr ` R ) ) |
14 |
13 4
|
eqtr4di |
|- ( r = R -> ( invr ` r ) = I ) |
15 |
14
|
fveq1d |
|- ( r = R -> ( ( invr ` r ) ` y ) = ( I ` y ) ) |
16 |
11 12 15
|
oveq123d |
|- ( r = R -> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) = ( x .x. ( I ` y ) ) ) |
17 |
7 9 16
|
mpoeq123dv |
|- ( r = R -> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) ) |
18 |
|
df-dvr |
|- /r = ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) ) |
19 |
1
|
fvexi |
|- B e. _V |
20 |
3
|
fvexi |
|- U e. _V |
21 |
19 20
|
mpoex |
|- ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) e. _V |
22 |
17 18 21
|
fvmpt |
|- ( R e. _V -> ( /r ` R ) = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) ) |
23 |
|
fvprc |
|- ( -. R e. _V -> ( /r ` R ) = (/) ) |
24 |
|
fvprc |
|- ( -. R e. _V -> ( Base ` R ) = (/) ) |
25 |
1 24
|
eqtrid |
|- ( -. R e. _V -> B = (/) ) |
26 |
25
|
orcd |
|- ( -. R e. _V -> ( B = (/) \/ U = (/) ) ) |
27 |
|
0mpo0 |
|- ( ( B = (/) \/ U = (/) ) -> ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) = (/) ) |
28 |
26 27
|
syl |
|- ( -. R e. _V -> ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) = (/) ) |
29 |
23 28
|
eqtr4d |
|- ( -. R e. _V -> ( /r ` R ) = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) ) |
30 |
22 29
|
pm2.61i |
|- ( /r ` R ) = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) |
31 |
5 30
|
eqtri |
|- ./ = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) |