Step |
Hyp |
Ref |
Expression |
1 |
|
unitdvcl.o |
|- U = ( Unit ` R ) |
2 |
|
unitdvcl.d |
|- ./ = ( /r ` R ) |
3 |
|
dvrid.o |
|- .1. = ( 1r ` R ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
4 1
|
unitcl |
|- ( X e. U -> X e. ( Base ` R ) ) |
6 |
5
|
adantl |
|- ( ( R e. Ring /\ X e. U ) -> X e. ( Base ` R ) ) |
7 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
8 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
9 |
4 7 1 8 2
|
dvrval |
|- ( ( X e. ( Base ` R ) /\ X e. U ) -> ( X ./ X ) = ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) ) |
10 |
6 9
|
sylancom |
|- ( ( R e. Ring /\ X e. U ) -> ( X ./ X ) = ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) ) |
11 |
1 8 7 3
|
unitrinv |
|- ( ( R e. Ring /\ X e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) = .1. ) |
12 |
10 11
|
eqtrd |
|- ( ( R e. Ring /\ X e. U ) -> ( X ./ X ) = .1. ) |