Metamath Proof Explorer


Theorem dvrid

Description: A cancellation law for division. ( divid analog.) (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses unitdvcl.o
|- U = ( Unit ` R )
unitdvcl.d
|- ./ = ( /r ` R )
dvrid.o
|- .1. = ( 1r ` R )
Assertion dvrid
|- ( ( R e. Ring /\ X e. U ) -> ( X ./ X ) = .1. )

Proof

Step Hyp Ref Expression
1 unitdvcl.o
 |-  U = ( Unit ` R )
2 unitdvcl.d
 |-  ./ = ( /r ` R )
3 dvrid.o
 |-  .1. = ( 1r ` R )
4 eqid
 |-  ( Base ` R ) = ( Base ` R )
5 4 1 unitcl
 |-  ( X e. U -> X e. ( Base ` R ) )
6 5 adantl
 |-  ( ( R e. Ring /\ X e. U ) -> X e. ( Base ` R ) )
7 eqid
 |-  ( .r ` R ) = ( .r ` R )
8 eqid
 |-  ( invr ` R ) = ( invr ` R )
9 4 7 1 8 2 dvrval
 |-  ( ( X e. ( Base ` R ) /\ X e. U ) -> ( X ./ X ) = ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) )
10 6 9 sylancom
 |-  ( ( R e. Ring /\ X e. U ) -> ( X ./ X ) = ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) )
11 1 8 7 3 unitrinv
 |-  ( ( R e. Ring /\ X e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) = .1. )
12 10 11 eqtrd
 |-  ( ( R e. Ring /\ X e. U ) -> ( X ./ X ) = .1. )