| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitdvcl.o |  |-  U = ( Unit ` R ) | 
						
							| 2 |  | unitdvcl.d |  |-  ./ = ( /r ` R ) | 
						
							| 3 |  | dvrid.o |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 | 4 1 | unitcl |  |-  ( X e. U -> X e. ( Base ` R ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( R e. Ring /\ X e. U ) -> X e. ( Base ` R ) ) | 
						
							| 7 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 8 |  | eqid |  |-  ( invr ` R ) = ( invr ` R ) | 
						
							| 9 | 4 7 1 8 2 | dvrval |  |-  ( ( X e. ( Base ` R ) /\ X e. U ) -> ( X ./ X ) = ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) ) | 
						
							| 10 | 6 9 | sylancom |  |-  ( ( R e. Ring /\ X e. U ) -> ( X ./ X ) = ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) ) | 
						
							| 11 | 1 8 7 3 | unitrinv |  |-  ( ( R e. Ring /\ X e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` X ) ) = .1. ) | 
						
							| 12 | 10 11 | eqtrd |  |-  ( ( R e. Ring /\ X e. U ) -> ( X ./ X ) = .1. ) |