Step |
Hyp |
Ref |
Expression |
1 |
|
dvrunz.1 |
|- G = ( 1st ` R ) |
2 |
|
dvrunz.2 |
|- H = ( 2nd ` R ) |
3 |
|
dvrunz.3 |
|- X = ran G |
4 |
|
dvrunz.4 |
|- Z = ( GId ` G ) |
5 |
|
dvrunz.5 |
|- U = ( GId ` H ) |
6 |
4
|
fvexi |
|- Z e. _V |
7 |
6
|
zrdivrng |
|- -. <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps |
8 |
1 2 3 4
|
drngoi |
|- ( R e. DivRingOps -> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) |
9 |
8
|
simpld |
|- ( R e. DivRingOps -> R e. RingOps ) |
10 |
1 2 4 5 3
|
rngoueqz |
|- ( R e. RingOps -> ( X ~~ 1o <-> U = Z ) ) |
11 |
9 10
|
syl |
|- ( R e. DivRingOps -> ( X ~~ 1o <-> U = Z ) ) |
12 |
1 3 4
|
rngosn6 |
|- ( R e. RingOps -> ( X ~~ 1o <-> R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. ) ) |
13 |
9 12
|
syl |
|- ( R e. DivRingOps -> ( X ~~ 1o <-> R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. ) ) |
14 |
|
eleq1 |
|- ( R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. -> ( R e. DivRingOps <-> <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps ) ) |
15 |
14
|
biimpd |
|- ( R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. -> ( R e. DivRingOps -> <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps ) ) |
16 |
13 15
|
syl6bi |
|- ( R e. DivRingOps -> ( X ~~ 1o -> ( R e. DivRingOps -> <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps ) ) ) |
17 |
16
|
pm2.43a |
|- ( R e. DivRingOps -> ( X ~~ 1o -> <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps ) ) |
18 |
11 17
|
sylbird |
|- ( R e. DivRingOps -> ( U = Z -> <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps ) ) |
19 |
18
|
necon3bd |
|- ( R e. DivRingOps -> ( -. <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps -> U =/= Z ) ) |
20 |
7 19
|
mpi |
|- ( R e. DivRingOps -> U =/= Z ) |