| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dvsinexp.5 | 
							 |-  ( ph -> N e. NN )  | 
						
						
							| 2 | 
							
								
							 | 
							cnelprrecn | 
							 |-  CC e. { RR , CC } | 
						
						
							| 3 | 
							
								2
							 | 
							a1i | 
							 |-  ( ph -> CC e. { RR , CC } ) | 
						
						
							| 4 | 
							
								
							 | 
							sinf | 
							 |-  sin : CC --> CC  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							 |-  ( ph -> sin : CC --> CC )  | 
						
						
							| 6 | 
							
								5
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ x e. CC ) -> ( sin ` x ) e. CC )  | 
						
						
							| 7 | 
							
								
							 | 
							cosf | 
							 |-  cos : CC --> CC  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							 |-  ( ph -> cos : CC --> CC )  | 
						
						
							| 9 | 
							
								8
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ x e. CC ) -> ( cos ` x ) e. CC )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ y e. CC ) -> y e. CC )  | 
						
						
							| 11 | 
							
								1
							 | 
							nnnn0d | 
							 |-  ( ph -> N e. NN0 )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. CC ) -> N e. NN0 )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							expcld | 
							 |-  ( ( ph /\ y e. CC ) -> ( y ^ N ) e. CC )  | 
						
						
							| 14 | 
							
								1
							 | 
							nncnd | 
							 |-  ( ph -> N e. CC )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. CC ) -> N e. CC )  | 
						
						
							| 16 | 
							
								
							 | 
							nnm1nn0 | 
							 |-  ( N e. NN -> ( N - 1 ) e. NN0 )  | 
						
						
							| 17 | 
							
								1 16
							 | 
							syl | 
							 |-  ( ph -> ( N - 1 ) e. NN0 )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. CC ) -> ( N - 1 ) e. NN0 )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							expcld | 
							 |-  ( ( ph /\ y e. CC ) -> ( y ^ ( N - 1 ) ) e. CC )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							mulcld | 
							 |-  ( ( ph /\ y e. CC ) -> ( N x. ( y ^ ( N - 1 ) ) ) e. CC )  | 
						
						
							| 21 | 
							
								
							 | 
							dvsin | 
							 |-  ( CC _D sin ) = cos  | 
						
						
							| 22 | 
							
								5
							 | 
							feqmptd | 
							 |-  ( ph -> sin = ( x e. CC |-> ( sin ` x ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq2d | 
							 |-  ( ph -> ( CC _D sin ) = ( CC _D ( x e. CC |-> ( sin ` x ) ) ) )  | 
						
						
							| 24 | 
							
								8
							 | 
							feqmptd | 
							 |-  ( ph -> cos = ( x e. CC |-> ( cos ` x ) ) )  | 
						
						
							| 25 | 
							
								21 23 24
							 | 
							3eqtr3a | 
							 |-  ( ph -> ( CC _D ( x e. CC |-> ( sin ` x ) ) ) = ( x e. CC |-> ( cos ` x ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							dvexp | 
							 |-  ( N e. NN -> ( CC _D ( y e. CC |-> ( y ^ N ) ) ) = ( y e. CC |-> ( N x. ( y ^ ( N - 1 ) ) ) ) )  | 
						
						
							| 27 | 
							
								1 26
							 | 
							syl | 
							 |-  ( ph -> ( CC _D ( y e. CC |-> ( y ^ N ) ) ) = ( y e. CC |-> ( N x. ( y ^ ( N - 1 ) ) ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							oveq1 | 
							 |-  ( y = ( sin ` x ) -> ( y ^ N ) = ( ( sin ` x ) ^ N ) )  | 
						
						
							| 29 | 
							
								
							 | 
							oveq1 | 
							 |-  ( y = ( sin ` x ) -> ( y ^ ( N - 1 ) ) = ( ( sin ` x ) ^ ( N - 1 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq2d | 
							 |-  ( y = ( sin ` x ) -> ( N x. ( y ^ ( N - 1 ) ) ) = ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) )  | 
						
						
							| 31 | 
							
								3 3 6 9 13 20 25 27 28 30
							 | 
							dvmptco | 
							 |-  ( ph -> ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) )  |