Step |
Hyp |
Ref |
Expression |
1 |
|
dvsinexp.5 |
|- ( ph -> N e. NN ) |
2 |
|
cnelprrecn |
|- CC e. { RR , CC } |
3 |
2
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
4 |
|
sinf |
|- sin : CC --> CC |
5 |
4
|
a1i |
|- ( ph -> sin : CC --> CC ) |
6 |
5
|
ffvelrnda |
|- ( ( ph /\ x e. CC ) -> ( sin ` x ) e. CC ) |
7 |
|
cosf |
|- cos : CC --> CC |
8 |
7
|
a1i |
|- ( ph -> cos : CC --> CC ) |
9 |
8
|
ffvelrnda |
|- ( ( ph /\ x e. CC ) -> ( cos ` x ) e. CC ) |
10 |
|
simpr |
|- ( ( ph /\ y e. CC ) -> y e. CC ) |
11 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
12 |
11
|
adantr |
|- ( ( ph /\ y e. CC ) -> N e. NN0 ) |
13 |
10 12
|
expcld |
|- ( ( ph /\ y e. CC ) -> ( y ^ N ) e. CC ) |
14 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
15 |
14
|
adantr |
|- ( ( ph /\ y e. CC ) -> N e. CC ) |
16 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
17 |
1 16
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
18 |
17
|
adantr |
|- ( ( ph /\ y e. CC ) -> ( N - 1 ) e. NN0 ) |
19 |
10 18
|
expcld |
|- ( ( ph /\ y e. CC ) -> ( y ^ ( N - 1 ) ) e. CC ) |
20 |
15 19
|
mulcld |
|- ( ( ph /\ y e. CC ) -> ( N x. ( y ^ ( N - 1 ) ) ) e. CC ) |
21 |
|
dvsin |
|- ( CC _D sin ) = cos |
22 |
5
|
feqmptd |
|- ( ph -> sin = ( x e. CC |-> ( sin ` x ) ) ) |
23 |
22
|
oveq2d |
|- ( ph -> ( CC _D sin ) = ( CC _D ( x e. CC |-> ( sin ` x ) ) ) ) |
24 |
8
|
feqmptd |
|- ( ph -> cos = ( x e. CC |-> ( cos ` x ) ) ) |
25 |
21 23 24
|
3eqtr3a |
|- ( ph -> ( CC _D ( x e. CC |-> ( sin ` x ) ) ) = ( x e. CC |-> ( cos ` x ) ) ) |
26 |
|
dvexp |
|- ( N e. NN -> ( CC _D ( y e. CC |-> ( y ^ N ) ) ) = ( y e. CC |-> ( N x. ( y ^ ( N - 1 ) ) ) ) ) |
27 |
1 26
|
syl |
|- ( ph -> ( CC _D ( y e. CC |-> ( y ^ N ) ) ) = ( y e. CC |-> ( N x. ( y ^ ( N - 1 ) ) ) ) ) |
28 |
|
oveq1 |
|- ( y = ( sin ` x ) -> ( y ^ N ) = ( ( sin ` x ) ^ N ) ) |
29 |
|
oveq1 |
|- ( y = ( sin ` x ) -> ( y ^ ( N - 1 ) ) = ( ( sin ` x ) ^ ( N - 1 ) ) ) |
30 |
29
|
oveq2d |
|- ( y = ( sin ` x ) -> ( N x. ( y ^ ( N - 1 ) ) ) = ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
31 |
3 3 6 9 13 20 25 27 28 30
|
dvmptco |
|- ( ph -> ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |