Step |
Hyp |
Ref |
Expression |
1 |
|
dvsubf.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvsubf.f |
|- ( ph -> F : X --> CC ) |
3 |
|
dvsubf.g |
|- ( ph -> G : X --> CC ) |
4 |
|
dvsubf.fdv |
|- ( ph -> dom ( S _D F ) = X ) |
5 |
|
dvsubf.gdv |
|- ( ph -> dom ( S _D G ) = X ) |
6 |
2
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. CC ) |
7 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
8 |
1 7
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
9 |
4
|
feq2d |
|- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
10 |
8 9
|
mpbid |
|- ( ph -> ( S _D F ) : X --> CC ) |
11 |
10
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. CC ) |
12 |
2
|
feqmptd |
|- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
13 |
12
|
oveq2d |
|- ( ph -> ( S _D F ) = ( S _D ( x e. X |-> ( F ` x ) ) ) ) |
14 |
10
|
feqmptd |
|- ( ph -> ( S _D F ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
15 |
13 14
|
eqtr3d |
|- ( ph -> ( S _D ( x e. X |-> ( F ` x ) ) ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
16 |
3
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. CC ) |
17 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
18 |
1 17
|
syl |
|- ( ph -> ( S _D G ) : dom ( S _D G ) --> CC ) |
19 |
5
|
feq2d |
|- ( ph -> ( ( S _D G ) : dom ( S _D G ) --> CC <-> ( S _D G ) : X --> CC ) ) |
20 |
18 19
|
mpbid |
|- ( ph -> ( S _D G ) : X --> CC ) |
21 |
20
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( ( S _D G ) ` x ) e. CC ) |
22 |
3
|
feqmptd |
|- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
23 |
22
|
oveq2d |
|- ( ph -> ( S _D G ) = ( S _D ( x e. X |-> ( G ` x ) ) ) ) |
24 |
20
|
feqmptd |
|- ( ph -> ( S _D G ) = ( x e. X |-> ( ( S _D G ) ` x ) ) ) |
25 |
23 24
|
eqtr3d |
|- ( ph -> ( S _D ( x e. X |-> ( G ` x ) ) ) = ( x e. X |-> ( ( S _D G ) ` x ) ) ) |
26 |
1 6 11 15 16 21 25
|
dvmptsub |
|- ( ph -> ( S _D ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ) = ( x e. X |-> ( ( ( S _D F ) ` x ) - ( ( S _D G ) ` x ) ) ) ) |
27 |
|
ovex |
|- ( S _D F ) e. _V |
28 |
27
|
dmex |
|- dom ( S _D F ) e. _V |
29 |
4 28
|
eqeltrrdi |
|- ( ph -> X e. _V ) |
30 |
29 6 16 12 22
|
offval2 |
|- ( ph -> ( F oF - G ) = ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ) |
31 |
30
|
oveq2d |
|- ( ph -> ( S _D ( F oF - G ) ) = ( S _D ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ) ) |
32 |
29 11 21 14 24
|
offval2 |
|- ( ph -> ( ( S _D F ) oF - ( S _D G ) ) = ( x e. X |-> ( ( ( S _D F ) ` x ) - ( ( S _D G ) ` x ) ) ) ) |
33 |
26 31 32
|
3eqtr4d |
|- ( ph -> ( S _D ( F oF - G ) ) = ( ( S _D F ) oF - ( S _D G ) ) ) |