| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvtaylp.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvtaylp.f |
|- ( ph -> F : A --> CC ) |
| 3 |
|
dvtaylp.a |
|- ( ph -> A C_ S ) |
| 4 |
|
dvtaylp.n |
|- ( ph -> N e. NN0 ) |
| 5 |
|
dvtaylp.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` ( N + 1 ) ) ) |
| 6 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 7 |
6
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 8 |
7
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 9 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 10 |
9
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
| 11 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
| 12 |
7 11
|
mp1i |
|- ( ph -> CC e. ( TopOpen ` CCfld ) ) |
| 13 |
|
fzfid |
|- ( ph -> ( 0 ... ( N + 1 ) ) e. Fin ) |
| 14 |
|
cnex |
|- CC e. _V |
| 15 |
14
|
a1i |
|- ( ph -> CC e. _V ) |
| 16 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
| 17 |
15 1 2 3 16
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
| 18 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N + 1 ) ) -> k e. NN0 ) |
| 19 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
| 20 |
1 17 18 19
|
syl2an3an |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
| 21 |
|
0z |
|- 0 e. ZZ |
| 22 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 23 |
4 22
|
syl |
|- ( ph -> ( N + 1 ) e. NN0 ) |
| 24 |
23
|
nn0zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
| 25 |
|
fzval2 |
|- ( ( 0 e. ZZ /\ ( N + 1 ) e. ZZ ) -> ( 0 ... ( N + 1 ) ) = ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) |
| 26 |
21 24 25
|
sylancr |
|- ( ph -> ( 0 ... ( N + 1 ) ) = ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) |
| 27 |
26
|
eleq2d |
|- ( ph -> ( k e. ( 0 ... ( N + 1 ) ) <-> k e. ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) ) |
| 28 |
27
|
biimpa |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) |
| 29 |
1 2 3 23 5
|
taylplem1 |
|- ( ( ph /\ k e. ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
| 30 |
28 29
|
syldan |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
| 31 |
20 30
|
ffvelcdmd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) |
| 32 |
18
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. NN0 ) |
| 33 |
32
|
faccld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ! ` k ) e. NN ) |
| 34 |
33
|
nncnd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ! ` k ) e. CC ) |
| 35 |
33
|
nnne0d |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ! ` k ) =/= 0 ) |
| 36 |
31 34 35
|
divcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
| 37 |
36
|
3adant3 |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
| 38 |
|
simp3 |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> x e. CC ) |
| 39 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 40 |
1 39
|
syl |
|- ( ph -> S C_ CC ) |
| 41 |
3 40
|
sstrd |
|- ( ph -> A C_ CC ) |
| 42 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ ( N + 1 ) e. NN0 ) -> dom ( ( S Dn F ) ` ( N + 1 ) ) C_ dom F ) |
| 43 |
1 17 23 42
|
syl3anc |
|- ( ph -> dom ( ( S Dn F ) ` ( N + 1 ) ) C_ dom F ) |
| 44 |
2 43
|
fssdmd |
|- ( ph -> dom ( ( S Dn F ) ` ( N + 1 ) ) C_ A ) |
| 45 |
44 5
|
sseldd |
|- ( ph -> B e. A ) |
| 46 |
41 45
|
sseldd |
|- ( ph -> B e. CC ) |
| 47 |
46
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> B e. CC ) |
| 48 |
38 47
|
subcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( x - B ) e. CC ) |
| 49 |
18
|
3ad2ant2 |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> k e. NN0 ) |
| 50 |
48 49
|
expcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( x - B ) ^ k ) e. CC ) |
| 51 |
37 50
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) e. CC ) |
| 52 |
|
0cnd |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ k = 0 ) -> 0 e. CC ) |
| 53 |
49
|
nn0cnd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> k e. CC ) |
| 54 |
53
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k e. CC ) |
| 55 |
48
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( x - B ) e. CC ) |
| 56 |
49
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k e. NN0 ) |
| 57 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> -. k = 0 ) |
| 58 |
57
|
neqned |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k =/= 0 ) |
| 59 |
|
elnnne0 |
|- ( k e. NN <-> ( k e. NN0 /\ k =/= 0 ) ) |
| 60 |
56 58 59
|
sylanbrc |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k e. NN ) |
| 61 |
|
nnm1nn0 |
|- ( k e. NN -> ( k - 1 ) e. NN0 ) |
| 62 |
60 61
|
syl |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( k - 1 ) e. NN0 ) |
| 63 |
55 62
|
expcld |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( ( x - B ) ^ ( k - 1 ) ) e. CC ) |
| 64 |
54 63
|
mulcld |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) e. CC ) |
| 65 |
52 64
|
ifclda |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) |
| 66 |
37 65
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) e. CC ) |
| 67 |
9
|
a1i |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> CC e. { RR , CC } ) |
| 68 |
50
|
3expa |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> ( ( x - B ) ^ k ) e. CC ) |
| 69 |
65
|
3expa |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) |
| 70 |
48
|
3expa |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> ( x - B ) e. CC ) |
| 71 |
|
1cnd |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> 1 e. CC ) |
| 72 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> y e. CC ) |
| 73 |
32
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> k e. NN0 ) |
| 74 |
72 73
|
expcld |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> ( y ^ k ) e. CC ) |
| 75 |
|
c0ex |
|- 0 e. _V |
| 76 |
|
ovex |
|- ( k x. ( y ^ ( k - 1 ) ) ) e. _V |
| 77 |
75 76
|
ifex |
|- if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) e. _V |
| 78 |
77
|
a1i |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) e. _V ) |
| 79 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> x e. CC ) |
| 80 |
67
|
dvmptid |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
| 81 |
46
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> B e. CC ) |
| 82 |
|
0cnd |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> 0 e. CC ) |
| 83 |
46
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> B e. CC ) |
| 84 |
67 83
|
dvmptc |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> B ) ) = ( x e. CC |-> 0 ) ) |
| 85 |
67 79 71 80 81 82 84
|
dvmptsub |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( x - B ) ) ) = ( x e. CC |-> ( 1 - 0 ) ) ) |
| 86 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 87 |
86
|
mpteq2i |
|- ( x e. CC |-> ( 1 - 0 ) ) = ( x e. CC |-> 1 ) |
| 88 |
85 87
|
eqtrdi |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( x - B ) ) ) = ( x e. CC |-> 1 ) ) |
| 89 |
|
dvexp2 |
|- ( k e. NN0 -> ( CC _D ( y e. CC |-> ( y ^ k ) ) ) = ( y e. CC |-> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) ) ) |
| 90 |
32 89
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( y e. CC |-> ( y ^ k ) ) ) = ( y e. CC |-> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) ) ) |
| 91 |
|
oveq1 |
|- ( y = ( x - B ) -> ( y ^ k ) = ( ( x - B ) ^ k ) ) |
| 92 |
|
oveq1 |
|- ( y = ( x - B ) -> ( y ^ ( k - 1 ) ) = ( ( x - B ) ^ ( k - 1 ) ) ) |
| 93 |
92
|
oveq2d |
|- ( y = ( x - B ) -> ( k x. ( y ^ ( k - 1 ) ) ) = ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
| 94 |
93
|
ifeq2d |
|- ( y = ( x - B ) -> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) = if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) |
| 95 |
67 67 70 71 74 78 88 90 91 94
|
dvmptco |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( ( x - B ) ^ k ) ) ) = ( x e. CC |-> ( if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) x. 1 ) ) ) |
| 96 |
69
|
mulridd |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> ( if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) x. 1 ) = if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) |
| 97 |
96
|
mpteq2dva |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( x e. CC |-> ( if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) x. 1 ) ) = ( x e. CC |-> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) |
| 98 |
95 97
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( ( x - B ) ^ k ) ) ) = ( x e. CC |-> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) |
| 99 |
67 68 69 98 36
|
dvmptcmul |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = ( x e. CC |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) ) |
| 100 |
8 6 10 12 13 51 66 99
|
dvmptfsum |
|- ( ph -> ( CC _D ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) ) |
| 101 |
|
1zzd |
|- ( ( ph /\ x e. CC ) -> 1 e. ZZ ) |
| 102 |
|
0zd |
|- ( ( ph /\ x e. CC ) -> 0 e. ZZ ) |
| 103 |
4
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 104 |
103
|
adantr |
|- ( ( ph /\ x e. CC ) -> N e. ZZ ) |
| 105 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 106 |
1 105
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 107 |
40 2 3
|
dvbss |
|- ( ph -> dom ( S _D F ) C_ A ) |
| 108 |
107 3
|
sstrd |
|- ( ph -> dom ( S _D F ) C_ S ) |
| 109 |
|
1nn0 |
|- 1 e. NN0 |
| 110 |
109
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 111 |
|
dvnadd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( 1 e. NN0 /\ N e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` N ) = ( ( S Dn F ) ` ( 1 + N ) ) ) |
| 112 |
1 17 110 4 111
|
syl22anc |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` N ) = ( ( S Dn F ) ` ( 1 + N ) ) ) |
| 113 |
|
dvn1 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) |
| 114 |
40 17 113
|
syl2anc |
|- ( ph -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) |
| 115 |
114
|
oveq2d |
|- ( ph -> ( S Dn ( ( S Dn F ) ` 1 ) ) = ( S Dn ( S _D F ) ) ) |
| 116 |
115
|
fveq1d |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` N ) = ( ( S Dn ( S _D F ) ) ` N ) ) |
| 117 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 118 |
4
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 119 |
117 118
|
addcomd |
|- ( ph -> ( 1 + N ) = ( N + 1 ) ) |
| 120 |
119
|
fveq2d |
|- ( ph -> ( ( S Dn F ) ` ( 1 + N ) ) = ( ( S Dn F ) ` ( N + 1 ) ) ) |
| 121 |
112 116 120
|
3eqtr3d |
|- ( ph -> ( ( S Dn ( S _D F ) ) ` N ) = ( ( S Dn F ) ` ( N + 1 ) ) ) |
| 122 |
121
|
dmeqd |
|- ( ph -> dom ( ( S Dn ( S _D F ) ) ` N ) = dom ( ( S Dn F ) ` ( N + 1 ) ) ) |
| 123 |
5 122
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn ( S _D F ) ) ` N ) ) |
| 124 |
1 106 108 4 123
|
taylplem2 |
|- ( ( ( ph /\ x e. CC ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) e. CC ) |
| 125 |
|
fveq2 |
|- ( j = ( k - 1 ) -> ( ( S Dn ( S _D F ) ) ` j ) = ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ) |
| 126 |
125
|
fveq1d |
|- ( j = ( k - 1 ) -> ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) = ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) ) |
| 127 |
|
fveq2 |
|- ( j = ( k - 1 ) -> ( ! ` j ) = ( ! ` ( k - 1 ) ) ) |
| 128 |
126 127
|
oveq12d |
|- ( j = ( k - 1 ) -> ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) |
| 129 |
|
oveq2 |
|- ( j = ( k - 1 ) -> ( ( x - B ) ^ j ) = ( ( x - B ) ^ ( k - 1 ) ) ) |
| 130 |
128 129
|
oveq12d |
|- ( j = ( k - 1 ) -> ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) = ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
| 131 |
101 102 104 124 130
|
fsumshft |
|- ( ( ph /\ x e. CC ) -> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
| 132 |
|
elfznn |
|- ( k e. ( 1 ... ( N + 1 ) ) -> k e. NN ) |
| 133 |
132
|
adantl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k e. NN ) |
| 134 |
133
|
nnne0d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k =/= 0 ) |
| 135 |
|
ifnefalse |
|- ( k =/= 0 -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) = ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
| 136 |
134 135
|
syl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) = ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
| 137 |
136
|
oveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) |
| 138 |
|
simpll |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ph ) |
| 139 |
|
fz1ssfz0 |
|- ( 1 ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) |
| 140 |
139
|
sseli |
|- ( k e. ( 1 ... ( N + 1 ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
| 141 |
140
|
adantl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
| 142 |
138 141 36
|
syl2anc |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
| 143 |
133
|
nncnd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k e. CC ) |
| 144 |
|
simplr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> x e. CC ) |
| 145 |
46
|
ad2antrr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> B e. CC ) |
| 146 |
144 145
|
subcld |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( x - B ) e. CC ) |
| 147 |
133 61
|
syl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( k - 1 ) e. NN0 ) |
| 148 |
146 147
|
expcld |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( x - B ) ^ ( k - 1 ) ) e. CC ) |
| 149 |
142 143 148
|
mulassd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) x. ( ( x - B ) ^ ( k - 1 ) ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) |
| 150 |
|
facp1 |
|- ( ( k - 1 ) e. NN0 -> ( ! ` ( ( k - 1 ) + 1 ) ) = ( ( ! ` ( k - 1 ) ) x. ( ( k - 1 ) + 1 ) ) ) |
| 151 |
147 150
|
syl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( ( k - 1 ) + 1 ) ) = ( ( ! ` ( k - 1 ) ) x. ( ( k - 1 ) + 1 ) ) ) |
| 152 |
|
1cnd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> 1 e. CC ) |
| 153 |
143 152
|
npcand |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( k - 1 ) + 1 ) = k ) |
| 154 |
153
|
fveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( ( k - 1 ) + 1 ) ) = ( ! ` k ) ) |
| 155 |
153
|
oveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ! ` ( k - 1 ) ) x. ( ( k - 1 ) + 1 ) ) = ( ( ! ` ( k - 1 ) ) x. k ) ) |
| 156 |
151 154 155
|
3eqtr3d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` k ) = ( ( ! ` ( k - 1 ) ) x. k ) ) |
| 157 |
156
|
oveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ! ` k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ( ! ` ( k - 1 ) ) x. k ) ) ) |
| 158 |
32
|
nn0cnd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. CC ) |
| 159 |
31 158 34 35
|
div23d |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ! ` k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) ) |
| 160 |
138 141 159
|
syl2anc |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ! ` k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) ) |
| 161 |
138 141 31
|
syl2anc |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) |
| 162 |
147
|
faccld |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( k - 1 ) ) e. NN ) |
| 163 |
162
|
nncnd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( k - 1 ) ) e. CC ) |
| 164 |
162
|
nnne0d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( k - 1 ) ) =/= 0 ) |
| 165 |
161 163 143 164 134
|
divcan5rd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ( ! ` ( k - 1 ) ) x. k ) ) = ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` ( k - 1 ) ) ) ) |
| 166 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> S e. { RR , CC } ) |
| 167 |
17
|
ad2antrr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> F e. ( CC ^pm S ) ) |
| 168 |
109
|
a1i |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> 1 e. NN0 ) |
| 169 |
|
dvnadd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( 1 e. NN0 /\ ( k - 1 ) e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` ( k - 1 ) ) = ( ( S Dn F ) ` ( 1 + ( k - 1 ) ) ) ) |
| 170 |
166 167 168 147 169
|
syl22anc |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` ( k - 1 ) ) = ( ( S Dn F ) ` ( 1 + ( k - 1 ) ) ) ) |
| 171 |
114
|
ad2antrr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) |
| 172 |
171
|
oveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( S Dn ( ( S Dn F ) ` 1 ) ) = ( S Dn ( S _D F ) ) ) |
| 173 |
172
|
fveq1d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` ( k - 1 ) ) = ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ) |
| 174 |
152 143
|
pncan3d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( 1 + ( k - 1 ) ) = k ) |
| 175 |
174
|
fveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` ( 1 + ( k - 1 ) ) ) = ( ( S Dn F ) ` k ) ) |
| 176 |
170 173 175
|
3eqtr3rd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` k ) = ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ) |
| 177 |
176
|
fveq1d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( S Dn F ) ` k ) ` B ) = ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) ) |
| 178 |
177
|
oveq1d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` ( k - 1 ) ) ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) |
| 179 |
165 178
|
eqtrd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ( ! ` ( k - 1 ) ) x. k ) ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) |
| 180 |
157 160 179
|
3eqtr3d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) |
| 181 |
180
|
oveq1d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) x. ( ( x - B ) ^ ( k - 1 ) ) ) = ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
| 182 |
137 149 181
|
3eqtr2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
| 183 |
182
|
sumeq2dv |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
| 184 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 185 |
184
|
oveq1i |
|- ( ( 0 + 1 ) ... ( N + 1 ) ) = ( 1 ... ( N + 1 ) ) |
| 186 |
185
|
sumeq1i |
|- sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) = sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) |
| 187 |
183 186
|
eqtr4di |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
| 188 |
139
|
a1i |
|- ( ( ph /\ x e. CC ) -> ( 1 ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) ) |
| 189 |
69
|
an32s |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) |
| 190 |
140 189
|
sylan2 |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) |
| 191 |
142 190
|
mulcld |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) e. CC ) |
| 192 |
|
eldif |
|- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) <-> ( k e. ( 0 ... ( N + 1 ) ) /\ -. k e. ( 1 ... ( N + 1 ) ) ) ) |
| 193 |
59
|
biimpri |
|- ( ( k e. NN0 /\ k =/= 0 ) -> k e. NN ) |
| 194 |
18 193
|
sylan |
|- ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> k e. NN ) |
| 195 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 196 |
194 195
|
eleqtrdi |
|- ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> k e. ( ZZ>= ` 1 ) ) |
| 197 |
|
elfzuz3 |
|- ( k e. ( 0 ... ( N + 1 ) ) -> ( N + 1 ) e. ( ZZ>= ` k ) ) |
| 198 |
197
|
adantr |
|- ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> ( N + 1 ) e. ( ZZ>= ` k ) ) |
| 199 |
|
elfzuzb |
|- ( k e. ( 1 ... ( N + 1 ) ) <-> ( k e. ( ZZ>= ` 1 ) /\ ( N + 1 ) e. ( ZZ>= ` k ) ) ) |
| 200 |
196 198 199
|
sylanbrc |
|- ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> k e. ( 1 ... ( N + 1 ) ) ) |
| 201 |
200
|
ex |
|- ( k e. ( 0 ... ( N + 1 ) ) -> ( k =/= 0 -> k e. ( 1 ... ( N + 1 ) ) ) ) |
| 202 |
201
|
adantl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( k =/= 0 -> k e. ( 1 ... ( N + 1 ) ) ) ) |
| 203 |
202
|
necon1bd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -. k e. ( 1 ... ( N + 1 ) ) -> k = 0 ) ) |
| 204 |
203
|
impr |
|- ( ( ( ph /\ x e. CC ) /\ ( k e. ( 0 ... ( N + 1 ) ) /\ -. k e. ( 1 ... ( N + 1 ) ) ) ) -> k = 0 ) |
| 205 |
192 204
|
sylan2b |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> k = 0 ) |
| 206 |
205
|
iftrued |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) = 0 ) |
| 207 |
206
|
oveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) ) |
| 208 |
|
eldifi |
|- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
| 209 |
36
|
adantlr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
| 210 |
208 209
|
sylan2 |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
| 211 |
210
|
mul01d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) = 0 ) |
| 212 |
207 211
|
eqtrd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = 0 ) |
| 213 |
|
fzfid |
|- ( ( ph /\ x e. CC ) -> ( 0 ... ( N + 1 ) ) e. Fin ) |
| 214 |
188 191 212 213
|
fsumss |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) |
| 215 |
131 187 214
|
3eqtr2rd |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) |
| 216 |
215
|
mpteq2dva |
|- ( ph -> ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) = ( x e. CC |-> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) ) |
| 217 |
100 216
|
eqtrd |
|- ( ph -> ( CC _D ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = ( x e. CC |-> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) ) |
| 218 |
|
eqid |
|- ( ( N + 1 ) ( S Tayl F ) B ) = ( ( N + 1 ) ( S Tayl F ) B ) |
| 219 |
1 2 3 23 5 218
|
taylpfval |
|- ( ph -> ( ( N + 1 ) ( S Tayl F ) B ) = ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) |
| 220 |
219
|
oveq2d |
|- ( ph -> ( CC _D ( ( N + 1 ) ( S Tayl F ) B ) ) = ( CC _D ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) |
| 221 |
|
eqid |
|- ( N ( S Tayl ( S _D F ) ) B ) = ( N ( S Tayl ( S _D F ) ) B ) |
| 222 |
1 106 108 4 123 221
|
taylpfval |
|- ( ph -> ( N ( S Tayl ( S _D F ) ) B ) = ( x e. CC |-> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) ) |
| 223 |
217 220 222
|
3eqtr4d |
|- ( ph -> ( CC _D ( ( N + 1 ) ( S Tayl F ) B ) ) = ( N ( S Tayl ( S _D F ) ) B ) ) |