Step |
Hyp |
Ref |
Expression |
1 |
|
dvtaylp.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvtaylp.f |
|- ( ph -> F : A --> CC ) |
3 |
|
dvtaylp.a |
|- ( ph -> A C_ S ) |
4 |
|
dvtaylp.n |
|- ( ph -> N e. NN0 ) |
5 |
|
dvtaylp.b |
|- ( ph -> B e. dom ( ( S Dn F ) ` ( N + 1 ) ) ) |
6 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
7 |
6
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
8 |
7
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
9 |
|
cnelprrecn |
|- CC e. { RR , CC } |
10 |
9
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
11 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
12 |
7 11
|
mp1i |
|- ( ph -> CC e. ( TopOpen ` CCfld ) ) |
13 |
|
fzfid |
|- ( ph -> ( 0 ... ( N + 1 ) ) e. Fin ) |
14 |
|
cnex |
|- CC e. _V |
15 |
14
|
a1i |
|- ( ph -> CC e. _V ) |
16 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
17 |
15 1 2 3 16
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
18 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N + 1 ) ) -> k e. NN0 ) |
19 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
20 |
1 17 18 19
|
syl2an3an |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
21 |
|
0z |
|- 0 e. ZZ |
22 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
23 |
4 22
|
syl |
|- ( ph -> ( N + 1 ) e. NN0 ) |
24 |
23
|
nn0zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
25 |
|
fzval2 |
|- ( ( 0 e. ZZ /\ ( N + 1 ) e. ZZ ) -> ( 0 ... ( N + 1 ) ) = ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) |
26 |
21 24 25
|
sylancr |
|- ( ph -> ( 0 ... ( N + 1 ) ) = ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) |
27 |
26
|
eleq2d |
|- ( ph -> ( k e. ( 0 ... ( N + 1 ) ) <-> k e. ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) ) |
28 |
27
|
biimpa |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) |
29 |
1 2 3 23 5
|
taylplem1 |
|- ( ( ph /\ k e. ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
30 |
28 29
|
syldan |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
31 |
20 30
|
ffvelrnd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) |
32 |
18
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. NN0 ) |
33 |
32
|
faccld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ! ` k ) e. NN ) |
34 |
33
|
nncnd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ! ` k ) e. CC ) |
35 |
33
|
nnne0d |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ! ` k ) =/= 0 ) |
36 |
31 34 35
|
divcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
37 |
36
|
3adant3 |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
38 |
|
simp3 |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> x e. CC ) |
39 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
40 |
1 39
|
syl |
|- ( ph -> S C_ CC ) |
41 |
3 40
|
sstrd |
|- ( ph -> A C_ CC ) |
42 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ ( N + 1 ) e. NN0 ) -> dom ( ( S Dn F ) ` ( N + 1 ) ) C_ dom F ) |
43 |
1 17 23 42
|
syl3anc |
|- ( ph -> dom ( ( S Dn F ) ` ( N + 1 ) ) C_ dom F ) |
44 |
2 43
|
fssdmd |
|- ( ph -> dom ( ( S Dn F ) ` ( N + 1 ) ) C_ A ) |
45 |
44 5
|
sseldd |
|- ( ph -> B e. A ) |
46 |
41 45
|
sseldd |
|- ( ph -> B e. CC ) |
47 |
46
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> B e. CC ) |
48 |
38 47
|
subcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( x - B ) e. CC ) |
49 |
18
|
3ad2ant2 |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> k e. NN0 ) |
50 |
48 49
|
expcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( x - B ) ^ k ) e. CC ) |
51 |
37 50
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) e. CC ) |
52 |
|
0cnd |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ k = 0 ) -> 0 e. CC ) |
53 |
49
|
nn0cnd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> k e. CC ) |
54 |
53
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k e. CC ) |
55 |
48
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( x - B ) e. CC ) |
56 |
49
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k e. NN0 ) |
57 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> -. k = 0 ) |
58 |
57
|
neqned |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k =/= 0 ) |
59 |
|
elnnne0 |
|- ( k e. NN <-> ( k e. NN0 /\ k =/= 0 ) ) |
60 |
56 58 59
|
sylanbrc |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k e. NN ) |
61 |
|
nnm1nn0 |
|- ( k e. NN -> ( k - 1 ) e. NN0 ) |
62 |
60 61
|
syl |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( k - 1 ) e. NN0 ) |
63 |
55 62
|
expcld |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( ( x - B ) ^ ( k - 1 ) ) e. CC ) |
64 |
54 63
|
mulcld |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) e. CC ) |
65 |
52 64
|
ifclda |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) |
66 |
37 65
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) e. CC ) |
67 |
9
|
a1i |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> CC e. { RR , CC } ) |
68 |
50
|
3expa |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> ( ( x - B ) ^ k ) e. CC ) |
69 |
65
|
3expa |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) |
70 |
48
|
3expa |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> ( x - B ) e. CC ) |
71 |
|
1cnd |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> 1 e. CC ) |
72 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> y e. CC ) |
73 |
32
|
adantr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> k e. NN0 ) |
74 |
72 73
|
expcld |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> ( y ^ k ) e. CC ) |
75 |
|
c0ex |
|- 0 e. _V |
76 |
|
ovex |
|- ( k x. ( y ^ ( k - 1 ) ) ) e. _V |
77 |
75 76
|
ifex |
|- if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) e. _V |
78 |
77
|
a1i |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) e. _V ) |
79 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> x e. CC ) |
80 |
67
|
dvmptid |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
81 |
46
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> B e. CC ) |
82 |
|
0cnd |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> 0 e. CC ) |
83 |
46
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> B e. CC ) |
84 |
67 83
|
dvmptc |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> B ) ) = ( x e. CC |-> 0 ) ) |
85 |
67 79 71 80 81 82 84
|
dvmptsub |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( x - B ) ) ) = ( x e. CC |-> ( 1 - 0 ) ) ) |
86 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
87 |
86
|
mpteq2i |
|- ( x e. CC |-> ( 1 - 0 ) ) = ( x e. CC |-> 1 ) |
88 |
85 87
|
eqtrdi |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( x - B ) ) ) = ( x e. CC |-> 1 ) ) |
89 |
|
dvexp2 |
|- ( k e. NN0 -> ( CC _D ( y e. CC |-> ( y ^ k ) ) ) = ( y e. CC |-> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) ) ) |
90 |
32 89
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( y e. CC |-> ( y ^ k ) ) ) = ( y e. CC |-> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) ) ) |
91 |
|
oveq1 |
|- ( y = ( x - B ) -> ( y ^ k ) = ( ( x - B ) ^ k ) ) |
92 |
|
oveq1 |
|- ( y = ( x - B ) -> ( y ^ ( k - 1 ) ) = ( ( x - B ) ^ ( k - 1 ) ) ) |
93 |
92
|
oveq2d |
|- ( y = ( x - B ) -> ( k x. ( y ^ ( k - 1 ) ) ) = ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
94 |
93
|
ifeq2d |
|- ( y = ( x - B ) -> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) = if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) |
95 |
67 67 70 71 74 78 88 90 91 94
|
dvmptco |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( ( x - B ) ^ k ) ) ) = ( x e. CC |-> ( if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) x. 1 ) ) ) |
96 |
69
|
mulid1d |
|- ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> ( if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) x. 1 ) = if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) |
97 |
96
|
mpteq2dva |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( x e. CC |-> ( if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) x. 1 ) ) = ( x e. CC |-> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) |
98 |
95 97
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( ( x - B ) ^ k ) ) ) = ( x e. CC |-> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) |
99 |
67 68 69 98 36
|
dvmptcmul |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = ( x e. CC |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) ) |
100 |
8 6 10 12 13 51 66 99
|
dvmptfsum |
|- ( ph -> ( CC _D ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) ) |
101 |
|
1zzd |
|- ( ( ph /\ x e. CC ) -> 1 e. ZZ ) |
102 |
|
0zd |
|- ( ( ph /\ x e. CC ) -> 0 e. ZZ ) |
103 |
4
|
nn0zd |
|- ( ph -> N e. ZZ ) |
104 |
103
|
adantr |
|- ( ( ph /\ x e. CC ) -> N e. ZZ ) |
105 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
106 |
1 105
|
syl |
|- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
107 |
40 2 3
|
dvbss |
|- ( ph -> dom ( S _D F ) C_ A ) |
108 |
107 3
|
sstrd |
|- ( ph -> dom ( S _D F ) C_ S ) |
109 |
|
1nn0 |
|- 1 e. NN0 |
110 |
109
|
a1i |
|- ( ph -> 1 e. NN0 ) |
111 |
|
dvnadd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( 1 e. NN0 /\ N e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` N ) = ( ( S Dn F ) ` ( 1 + N ) ) ) |
112 |
1 17 110 4 111
|
syl22anc |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` N ) = ( ( S Dn F ) ` ( 1 + N ) ) ) |
113 |
|
dvn1 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) |
114 |
40 17 113
|
syl2anc |
|- ( ph -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) |
115 |
114
|
oveq2d |
|- ( ph -> ( S Dn ( ( S Dn F ) ` 1 ) ) = ( S Dn ( S _D F ) ) ) |
116 |
115
|
fveq1d |
|- ( ph -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` N ) = ( ( S Dn ( S _D F ) ) ` N ) ) |
117 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
118 |
4
|
nn0cnd |
|- ( ph -> N e. CC ) |
119 |
117 118
|
addcomd |
|- ( ph -> ( 1 + N ) = ( N + 1 ) ) |
120 |
119
|
fveq2d |
|- ( ph -> ( ( S Dn F ) ` ( 1 + N ) ) = ( ( S Dn F ) ` ( N + 1 ) ) ) |
121 |
112 116 120
|
3eqtr3d |
|- ( ph -> ( ( S Dn ( S _D F ) ) ` N ) = ( ( S Dn F ) ` ( N + 1 ) ) ) |
122 |
121
|
dmeqd |
|- ( ph -> dom ( ( S Dn ( S _D F ) ) ` N ) = dom ( ( S Dn F ) ` ( N + 1 ) ) ) |
123 |
5 122
|
eleqtrrd |
|- ( ph -> B e. dom ( ( S Dn ( S _D F ) ) ` N ) ) |
124 |
1 106 108 4 123
|
taylplem2 |
|- ( ( ( ph /\ x e. CC ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) e. CC ) |
125 |
|
fveq2 |
|- ( j = ( k - 1 ) -> ( ( S Dn ( S _D F ) ) ` j ) = ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ) |
126 |
125
|
fveq1d |
|- ( j = ( k - 1 ) -> ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) = ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) ) |
127 |
|
fveq2 |
|- ( j = ( k - 1 ) -> ( ! ` j ) = ( ! ` ( k - 1 ) ) ) |
128 |
126 127
|
oveq12d |
|- ( j = ( k - 1 ) -> ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) |
129 |
|
oveq2 |
|- ( j = ( k - 1 ) -> ( ( x - B ) ^ j ) = ( ( x - B ) ^ ( k - 1 ) ) ) |
130 |
128 129
|
oveq12d |
|- ( j = ( k - 1 ) -> ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) = ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
131 |
101 102 104 124 130
|
fsumshft |
|- ( ( ph /\ x e. CC ) -> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
132 |
|
elfznn |
|- ( k e. ( 1 ... ( N + 1 ) ) -> k e. NN ) |
133 |
132
|
adantl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k e. NN ) |
134 |
133
|
nnne0d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k =/= 0 ) |
135 |
|
ifnefalse |
|- ( k =/= 0 -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) = ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
136 |
134 135
|
syl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) = ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
137 |
136
|
oveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) |
138 |
|
simpll |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ph ) |
139 |
|
fz1ssfz0 |
|- ( 1 ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) |
140 |
139
|
sseli |
|- ( k e. ( 1 ... ( N + 1 ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
141 |
140
|
adantl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
142 |
138 141 36
|
syl2anc |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
143 |
133
|
nncnd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k e. CC ) |
144 |
|
simplr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> x e. CC ) |
145 |
46
|
ad2antrr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> B e. CC ) |
146 |
144 145
|
subcld |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( x - B ) e. CC ) |
147 |
133 61
|
syl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( k - 1 ) e. NN0 ) |
148 |
146 147
|
expcld |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( x - B ) ^ ( k - 1 ) ) e. CC ) |
149 |
142 143 148
|
mulassd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) x. ( ( x - B ) ^ ( k - 1 ) ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) |
150 |
|
facp1 |
|- ( ( k - 1 ) e. NN0 -> ( ! ` ( ( k - 1 ) + 1 ) ) = ( ( ! ` ( k - 1 ) ) x. ( ( k - 1 ) + 1 ) ) ) |
151 |
147 150
|
syl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( ( k - 1 ) + 1 ) ) = ( ( ! ` ( k - 1 ) ) x. ( ( k - 1 ) + 1 ) ) ) |
152 |
|
1cnd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> 1 e. CC ) |
153 |
143 152
|
npcand |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( k - 1 ) + 1 ) = k ) |
154 |
153
|
fveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( ( k - 1 ) + 1 ) ) = ( ! ` k ) ) |
155 |
153
|
oveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ! ` ( k - 1 ) ) x. ( ( k - 1 ) + 1 ) ) = ( ( ! ` ( k - 1 ) ) x. k ) ) |
156 |
151 154 155
|
3eqtr3d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` k ) = ( ( ! ` ( k - 1 ) ) x. k ) ) |
157 |
156
|
oveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ! ` k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ( ! ` ( k - 1 ) ) x. k ) ) ) |
158 |
32
|
nn0cnd |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. CC ) |
159 |
31 158 34 35
|
div23d |
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ! ` k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) ) |
160 |
138 141 159
|
syl2anc |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ! ` k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) ) |
161 |
138 141 31
|
syl2anc |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) |
162 |
147
|
faccld |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( k - 1 ) ) e. NN ) |
163 |
162
|
nncnd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( k - 1 ) ) e. CC ) |
164 |
162
|
nnne0d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( k - 1 ) ) =/= 0 ) |
165 |
161 163 143 164 134
|
divcan5rd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ( ! ` ( k - 1 ) ) x. k ) ) = ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` ( k - 1 ) ) ) ) |
166 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> S e. { RR , CC } ) |
167 |
17
|
ad2antrr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> F e. ( CC ^pm S ) ) |
168 |
109
|
a1i |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> 1 e. NN0 ) |
169 |
|
dvnadd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( 1 e. NN0 /\ ( k - 1 ) e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` ( k - 1 ) ) = ( ( S Dn F ) ` ( 1 + ( k - 1 ) ) ) ) |
170 |
166 167 168 147 169
|
syl22anc |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` ( k - 1 ) ) = ( ( S Dn F ) ` ( 1 + ( k - 1 ) ) ) ) |
171 |
114
|
ad2antrr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) |
172 |
171
|
oveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( S Dn ( ( S Dn F ) ` 1 ) ) = ( S Dn ( S _D F ) ) ) |
173 |
172
|
fveq1d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` ( k - 1 ) ) = ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ) |
174 |
152 143
|
pncan3d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( 1 + ( k - 1 ) ) = k ) |
175 |
174
|
fveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` ( 1 + ( k - 1 ) ) ) = ( ( S Dn F ) ` k ) ) |
176 |
170 173 175
|
3eqtr3rd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` k ) = ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ) |
177 |
176
|
fveq1d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( S Dn F ) ` k ) ` B ) = ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) ) |
178 |
177
|
oveq1d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` ( k - 1 ) ) ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) |
179 |
165 178
|
eqtrd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ( ! ` ( k - 1 ) ) x. k ) ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) |
180 |
157 160 179
|
3eqtr3d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) |
181 |
180
|
oveq1d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) x. ( ( x - B ) ^ ( k - 1 ) ) ) = ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
182 |
137 149 181
|
3eqtr2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
183 |
182
|
sumeq2dv |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
184 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
185 |
184
|
oveq1i |
|- ( ( 0 + 1 ) ... ( N + 1 ) ) = ( 1 ... ( N + 1 ) ) |
186 |
185
|
sumeq1i |
|- sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) = sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) |
187 |
183 186
|
eqtr4di |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) |
188 |
139
|
a1i |
|- ( ( ph /\ x e. CC ) -> ( 1 ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) ) |
189 |
69
|
an32s |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) |
190 |
140 189
|
sylan2 |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) |
191 |
142 190
|
mulcld |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) e. CC ) |
192 |
|
eldif |
|- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) <-> ( k e. ( 0 ... ( N + 1 ) ) /\ -. k e. ( 1 ... ( N + 1 ) ) ) ) |
193 |
59
|
biimpri |
|- ( ( k e. NN0 /\ k =/= 0 ) -> k e. NN ) |
194 |
18 193
|
sylan |
|- ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> k e. NN ) |
195 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
196 |
194 195
|
eleqtrdi |
|- ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> k e. ( ZZ>= ` 1 ) ) |
197 |
|
elfzuz3 |
|- ( k e. ( 0 ... ( N + 1 ) ) -> ( N + 1 ) e. ( ZZ>= ` k ) ) |
198 |
197
|
adantr |
|- ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> ( N + 1 ) e. ( ZZ>= ` k ) ) |
199 |
|
elfzuzb |
|- ( k e. ( 1 ... ( N + 1 ) ) <-> ( k e. ( ZZ>= ` 1 ) /\ ( N + 1 ) e. ( ZZ>= ` k ) ) ) |
200 |
196 198 199
|
sylanbrc |
|- ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> k e. ( 1 ... ( N + 1 ) ) ) |
201 |
200
|
ex |
|- ( k e. ( 0 ... ( N + 1 ) ) -> ( k =/= 0 -> k e. ( 1 ... ( N + 1 ) ) ) ) |
202 |
201
|
adantl |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( k =/= 0 -> k e. ( 1 ... ( N + 1 ) ) ) ) |
203 |
202
|
necon1bd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -. k e. ( 1 ... ( N + 1 ) ) -> k = 0 ) ) |
204 |
203
|
impr |
|- ( ( ( ph /\ x e. CC ) /\ ( k e. ( 0 ... ( N + 1 ) ) /\ -. k e. ( 1 ... ( N + 1 ) ) ) ) -> k = 0 ) |
205 |
192 204
|
sylan2b |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> k = 0 ) |
206 |
205
|
iftrued |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) = 0 ) |
207 |
206
|
oveq2d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) ) |
208 |
|
eldifi |
|- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
209 |
36
|
adantlr |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
210 |
208 209
|
sylan2 |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
211 |
210
|
mul01d |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) = 0 ) |
212 |
207 211
|
eqtrd |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = 0 ) |
213 |
|
fzfid |
|- ( ( ph /\ x e. CC ) -> ( 0 ... ( N + 1 ) ) e. Fin ) |
214 |
188 191 212 213
|
fsumss |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) |
215 |
131 187 214
|
3eqtr2rd |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) |
216 |
215
|
mpteq2dva |
|- ( ph -> ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) = ( x e. CC |-> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) ) |
217 |
100 216
|
eqtrd |
|- ( ph -> ( CC _D ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = ( x e. CC |-> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) ) |
218 |
|
eqid |
|- ( ( N + 1 ) ( S Tayl F ) B ) = ( ( N + 1 ) ( S Tayl F ) B ) |
219 |
1 2 3 23 5 218
|
taylpfval |
|- ( ph -> ( ( N + 1 ) ( S Tayl F ) B ) = ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) |
220 |
219
|
oveq2d |
|- ( ph -> ( CC _D ( ( N + 1 ) ( S Tayl F ) B ) ) = ( CC _D ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) |
221 |
|
eqid |
|- ( N ( S Tayl ( S _D F ) ) B ) = ( N ( S Tayl ( S _D F ) ) B ) |
222 |
1 106 108 4 123 221
|
taylpfval |
|- ( ph -> ( N ( S Tayl ( S _D F ) ) B ) = ( x e. CC |-> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) ) |
223 |
217 220 222
|
3eqtr4d |
|- ( ph -> ( CC _D ( ( N + 1 ) ( S Tayl F ) B ) ) = ( N ( S Tayl ( S _D F ) ) B ) ) |