| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvxpaek.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | dvxpaek.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | dvxpaek.a |  |-  ( ph -> A e. CC ) | 
						
							| 4 |  | dvxpaek.k |  |-  ( ph -> K e. NN ) | 
						
							| 5 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 6 | 5 | a1i |  |-  ( ph -> CC e. { RR , CC } ) | 
						
							| 7 | 1 2 | dvdmsscn |  |-  ( ph -> X C_ CC ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ph /\ x e. X ) -> X C_ CC ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ x e. X ) -> x e. X ) | 
						
							| 10 | 8 9 | sseldd |  |-  ( ( ph /\ x e. X ) -> x e. CC ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ x e. X ) -> A e. CC ) | 
						
							| 12 | 10 11 | addcld |  |-  ( ( ph /\ x e. X ) -> ( x + A ) e. CC ) | 
						
							| 13 |  | 1red |  |-  ( ( ph /\ x e. X ) -> 1 e. RR ) | 
						
							| 14 |  | 0red |  |-  ( ( ph /\ x e. X ) -> 0 e. RR ) | 
						
							| 15 | 13 14 | readdcld |  |-  ( ( ph /\ x e. X ) -> ( 1 + 0 ) e. RR ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ y e. CC ) -> y e. CC ) | 
						
							| 17 | 4 | nnnn0d |  |-  ( ph -> K e. NN0 ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ y e. CC ) -> K e. NN0 ) | 
						
							| 19 | 16 18 | expcld |  |-  ( ( ph /\ y e. CC ) -> ( y ^ K ) e. CC ) | 
						
							| 20 | 18 | nn0cnd |  |-  ( ( ph /\ y e. CC ) -> K e. CC ) | 
						
							| 21 |  | nnm1nn0 |  |-  ( K e. NN -> ( K - 1 ) e. NN0 ) | 
						
							| 22 | 4 21 | syl |  |-  ( ph -> ( K - 1 ) e. NN0 ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ y e. CC ) -> ( K - 1 ) e. NN0 ) | 
						
							| 24 | 16 23 | expcld |  |-  ( ( ph /\ y e. CC ) -> ( y ^ ( K - 1 ) ) e. CC ) | 
						
							| 25 | 20 24 | mulcld |  |-  ( ( ph /\ y e. CC ) -> ( K x. ( y ^ ( K - 1 ) ) ) e. CC ) | 
						
							| 26 | 1 2 | dvmptidg |  |-  ( ph -> ( S _D ( x e. X |-> x ) ) = ( x e. X |-> 1 ) ) | 
						
							| 27 | 1 2 3 | dvmptconst |  |-  ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> 0 ) ) | 
						
							| 28 | 1 10 13 26 11 14 27 | dvmptadd |  |-  ( ph -> ( S _D ( x e. X |-> ( x + A ) ) ) = ( x e. X |-> ( 1 + 0 ) ) ) | 
						
							| 29 |  | dvexp |  |-  ( K e. NN -> ( CC _D ( y e. CC |-> ( y ^ K ) ) ) = ( y e. CC |-> ( K x. ( y ^ ( K - 1 ) ) ) ) ) | 
						
							| 30 | 4 29 | syl |  |-  ( ph -> ( CC _D ( y e. CC |-> ( y ^ K ) ) ) = ( y e. CC |-> ( K x. ( y ^ ( K - 1 ) ) ) ) ) | 
						
							| 31 |  | oveq1 |  |-  ( y = ( x + A ) -> ( y ^ K ) = ( ( x + A ) ^ K ) ) | 
						
							| 32 |  | oveq1 |  |-  ( y = ( x + A ) -> ( y ^ ( K - 1 ) ) = ( ( x + A ) ^ ( K - 1 ) ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( y = ( x + A ) -> ( K x. ( y ^ ( K - 1 ) ) ) = ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) ) | 
						
							| 34 | 1 6 12 15 19 25 28 30 31 33 | dvmptco |  |-  ( ph -> ( S _D ( x e. X |-> ( ( x + A ) ^ K ) ) ) = ( x e. X |-> ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. ( 1 + 0 ) ) ) ) | 
						
							| 35 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 36 | 35 | oveq2i |  |-  ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. ( 1 + 0 ) ) = ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. 1 ) | 
						
							| 37 | 36 | a1i |  |-  ( ( ph /\ x e. X ) -> ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. ( 1 + 0 ) ) = ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. 1 ) ) | 
						
							| 38 | 4 | nncnd |  |-  ( ph -> K e. CC ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ x e. X ) -> K e. CC ) | 
						
							| 40 | 22 | adantr |  |-  ( ( ph /\ x e. X ) -> ( K - 1 ) e. NN0 ) | 
						
							| 41 | 12 40 | expcld |  |-  ( ( ph /\ x e. X ) -> ( ( x + A ) ^ ( K - 1 ) ) e. CC ) | 
						
							| 42 | 39 41 | mulcld |  |-  ( ( ph /\ x e. X ) -> ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) e. CC ) | 
						
							| 43 | 42 | mulridd |  |-  ( ( ph /\ x e. X ) -> ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. 1 ) = ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) ) | 
						
							| 44 | 37 43 | eqtrd |  |-  ( ( ph /\ x e. X ) -> ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. ( 1 + 0 ) ) = ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) ) | 
						
							| 45 | 44 | mpteq2dva |  |-  ( ph -> ( x e. X |-> ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. ( 1 + 0 ) ) ) = ( x e. X |-> ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) ) ) | 
						
							| 46 | 34 45 | eqtrd |  |-  ( ph -> ( S _D ( x e. X |-> ( ( x + A ) ^ K ) ) ) = ( x e. X |-> ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) ) ) |