Step |
Hyp |
Ref |
Expression |
1 |
|
dvxpaek.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvxpaek.x |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
3 |
|
dvxpaek.a |
|- ( ph -> A e. CC ) |
4 |
|
dvxpaek.k |
|- ( ph -> K e. NN ) |
5 |
|
cnelprrecn |
|- CC e. { RR , CC } |
6 |
5
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
7 |
1 2
|
dvdmsscn |
|- ( ph -> X C_ CC ) |
8 |
7
|
adantr |
|- ( ( ph /\ x e. X ) -> X C_ CC ) |
9 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
10 |
8 9
|
sseldd |
|- ( ( ph /\ x e. X ) -> x e. CC ) |
11 |
3
|
adantr |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
12 |
10 11
|
addcld |
|- ( ( ph /\ x e. X ) -> ( x + A ) e. CC ) |
13 |
|
1red |
|- ( ( ph /\ x e. X ) -> 1 e. RR ) |
14 |
|
0red |
|- ( ( ph /\ x e. X ) -> 0 e. RR ) |
15 |
13 14
|
readdcld |
|- ( ( ph /\ x e. X ) -> ( 1 + 0 ) e. RR ) |
16 |
|
simpr |
|- ( ( ph /\ y e. CC ) -> y e. CC ) |
17 |
4
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
18 |
17
|
adantr |
|- ( ( ph /\ y e. CC ) -> K e. NN0 ) |
19 |
16 18
|
expcld |
|- ( ( ph /\ y e. CC ) -> ( y ^ K ) e. CC ) |
20 |
18
|
nn0cnd |
|- ( ( ph /\ y e. CC ) -> K e. CC ) |
21 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
22 |
4 21
|
syl |
|- ( ph -> ( K - 1 ) e. NN0 ) |
23 |
22
|
adantr |
|- ( ( ph /\ y e. CC ) -> ( K - 1 ) e. NN0 ) |
24 |
16 23
|
expcld |
|- ( ( ph /\ y e. CC ) -> ( y ^ ( K - 1 ) ) e. CC ) |
25 |
20 24
|
mulcld |
|- ( ( ph /\ y e. CC ) -> ( K x. ( y ^ ( K - 1 ) ) ) e. CC ) |
26 |
1 2
|
dvmptidg |
|- ( ph -> ( S _D ( x e. X |-> x ) ) = ( x e. X |-> 1 ) ) |
27 |
1 2 3
|
dvmptconst |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> 0 ) ) |
28 |
1 10 13 26 11 14 27
|
dvmptadd |
|- ( ph -> ( S _D ( x e. X |-> ( x + A ) ) ) = ( x e. X |-> ( 1 + 0 ) ) ) |
29 |
|
dvexp |
|- ( K e. NN -> ( CC _D ( y e. CC |-> ( y ^ K ) ) ) = ( y e. CC |-> ( K x. ( y ^ ( K - 1 ) ) ) ) ) |
30 |
4 29
|
syl |
|- ( ph -> ( CC _D ( y e. CC |-> ( y ^ K ) ) ) = ( y e. CC |-> ( K x. ( y ^ ( K - 1 ) ) ) ) ) |
31 |
|
oveq1 |
|- ( y = ( x + A ) -> ( y ^ K ) = ( ( x + A ) ^ K ) ) |
32 |
|
oveq1 |
|- ( y = ( x + A ) -> ( y ^ ( K - 1 ) ) = ( ( x + A ) ^ ( K - 1 ) ) ) |
33 |
32
|
oveq2d |
|- ( y = ( x + A ) -> ( K x. ( y ^ ( K - 1 ) ) ) = ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) ) |
34 |
1 6 12 15 19 25 28 30 31 33
|
dvmptco |
|- ( ph -> ( S _D ( x e. X |-> ( ( x + A ) ^ K ) ) ) = ( x e. X |-> ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. ( 1 + 0 ) ) ) ) |
35 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
36 |
35
|
oveq2i |
|- ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. ( 1 + 0 ) ) = ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. 1 ) |
37 |
36
|
a1i |
|- ( ( ph /\ x e. X ) -> ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. ( 1 + 0 ) ) = ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. 1 ) ) |
38 |
4
|
nncnd |
|- ( ph -> K e. CC ) |
39 |
38
|
adantr |
|- ( ( ph /\ x e. X ) -> K e. CC ) |
40 |
22
|
adantr |
|- ( ( ph /\ x e. X ) -> ( K - 1 ) e. NN0 ) |
41 |
12 40
|
expcld |
|- ( ( ph /\ x e. X ) -> ( ( x + A ) ^ ( K - 1 ) ) e. CC ) |
42 |
39 41
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) e. CC ) |
43 |
42
|
mulid1d |
|- ( ( ph /\ x e. X ) -> ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. 1 ) = ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) ) |
44 |
37 43
|
eqtrd |
|- ( ( ph /\ x e. X ) -> ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. ( 1 + 0 ) ) = ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) ) |
45 |
44
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) x. ( 1 + 0 ) ) ) = ( x e. X |-> ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) ) ) |
46 |
34 45
|
eqtrd |
|- ( ph -> ( S _D ( x e. X |-> ( ( x + A ) ^ K ) ) ) = ( x e. X |-> ( K x. ( ( x + A ) ^ ( K - 1 ) ) ) ) ) |