| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 |  |-  F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) | 
						
							| 2 | 1 | dyadf |  |-  F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) | 
						
							| 3 |  | ffn |  |-  ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) | 
						
							| 4 |  | ovelrn |  |-  ( F Fn ( ZZ X. NN0 ) -> ( A e. ran F <-> E. a e. ZZ E. c e. NN0 A = ( a F c ) ) ) | 
						
							| 5 |  | ovelrn |  |-  ( F Fn ( ZZ X. NN0 ) -> ( B e. ran F <-> E. b e. ZZ E. d e. NN0 B = ( b F d ) ) ) | 
						
							| 6 | 4 5 | anbi12d |  |-  ( F Fn ( ZZ X. NN0 ) -> ( ( A e. ran F /\ B e. ran F ) <-> ( E. a e. ZZ E. c e. NN0 A = ( a F c ) /\ E. b e. ZZ E. d e. NN0 B = ( b F d ) ) ) ) | 
						
							| 7 | 2 3 6 | mp2b |  |-  ( ( A e. ran F /\ B e. ran F ) <-> ( E. a e. ZZ E. c e. NN0 A = ( a F c ) /\ E. b e. ZZ E. d e. NN0 B = ( b F d ) ) ) | 
						
							| 8 |  | reeanv |  |-  ( E. a e. ZZ E. b e. ZZ ( E. c e. NN0 A = ( a F c ) /\ E. d e. NN0 B = ( b F d ) ) <-> ( E. a e. ZZ E. c e. NN0 A = ( a F c ) /\ E. b e. ZZ E. d e. NN0 B = ( b F d ) ) ) | 
						
							| 9 | 7 8 | bitr4i |  |-  ( ( A e. ran F /\ B e. ran F ) <-> E. a e. ZZ E. b e. ZZ ( E. c e. NN0 A = ( a F c ) /\ E. d e. NN0 B = ( b F d ) ) ) | 
						
							| 10 |  | reeanv |  |-  ( E. c e. NN0 E. d e. NN0 ( A = ( a F c ) /\ B = ( b F d ) ) <-> ( E. c e. NN0 A = ( a F c ) /\ E. d e. NN0 B = ( b F d ) ) ) | 
						
							| 11 |  | nn0re |  |-  ( c e. NN0 -> c e. RR ) | 
						
							| 12 | 11 | ad2antrl |  |-  ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) -> c e. RR ) | 
						
							| 13 |  | nn0re |  |-  ( d e. NN0 -> d e. RR ) | 
						
							| 14 | 13 | ad2antll |  |-  ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) -> d e. RR ) | 
						
							| 15 | 1 | dyaddisjlem |  |-  ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) /\ c <_ d ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) | 
						
							| 16 |  | ancom |  |-  ( ( a e. ZZ /\ b e. ZZ ) <-> ( b e. ZZ /\ a e. ZZ ) ) | 
						
							| 17 |  | ancom |  |-  ( ( c e. NN0 /\ d e. NN0 ) <-> ( d e. NN0 /\ c e. NN0 ) ) | 
						
							| 18 | 16 17 | anbi12i |  |-  ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) <-> ( ( b e. ZZ /\ a e. ZZ ) /\ ( d e. NN0 /\ c e. NN0 ) ) ) | 
						
							| 19 | 1 | dyaddisjlem |  |-  ( ( ( ( b e. ZZ /\ a e. ZZ ) /\ ( d e. NN0 /\ c e. NN0 ) ) /\ d <_ c ) -> ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) ) | 
						
							| 20 | 18 19 | sylanb |  |-  ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) /\ d <_ c ) -> ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) ) | 
						
							| 21 |  | orcom |  |-  ( ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) <-> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) ) ) | 
						
							| 22 |  | incom |  |-  ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) | 
						
							| 23 | 22 | eqeq1i |  |-  ( ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) <-> ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) | 
						
							| 24 | 21 23 | orbi12i |  |-  ( ( ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) <-> ( ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) | 
						
							| 25 |  | df-3or |  |-  ( ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) <-> ( ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) ) | 
						
							| 26 |  | df-3or |  |-  ( ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) <-> ( ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) | 
						
							| 27 | 24 25 26 | 3bitr4i |  |-  ( ( ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( ( (,) ` ( b F d ) ) i^i ( (,) ` ( a F c ) ) ) = (/) ) <-> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) | 
						
							| 28 | 20 27 | sylib |  |-  ( ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) /\ d <_ c ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) | 
						
							| 29 | 12 14 15 28 | lecasei |  |-  ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) | 
						
							| 30 |  | simpl |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> A = ( a F c ) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( [,] ` A ) = ( [,] ` ( a F c ) ) ) | 
						
							| 32 |  | simpr |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> B = ( b F d ) ) | 
						
							| 33 | 32 | fveq2d |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( [,] ` B ) = ( [,] ` ( b F d ) ) ) | 
						
							| 34 | 31 33 | sseq12d |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( [,] ` A ) C_ ( [,] ` B ) <-> ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) | 
						
							| 35 | 33 31 | sseq12d |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( [,] ` B ) C_ ( [,] ` A ) <-> ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) ) ) | 
						
							| 36 | 30 | fveq2d |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( (,) ` A ) = ( (,) ` ( a F c ) ) ) | 
						
							| 37 | 32 | fveq2d |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( (,) ` B ) = ( (,) ` ( b F d ) ) ) | 
						
							| 38 | 36 37 | ineq12d |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( (,) ` A ) i^i ( (,) ` B ) ) = ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) <-> ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) | 
						
							| 40 | 34 35 39 | 3orbi123d |  |-  ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) <-> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) \/ ( [,] ` ( b F d ) ) C_ ( [,] ` ( a F c ) ) \/ ( ( (,) ` ( a F c ) ) i^i ( (,) ` ( b F d ) ) ) = (/) ) ) ) | 
						
							| 41 | 29 40 | syl5ibrcom |  |-  ( ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. NN0 /\ d e. NN0 ) ) -> ( ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) ) | 
						
							| 42 | 41 | rexlimdvva |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> ( E. c e. NN0 E. d e. NN0 ( A = ( a F c ) /\ B = ( b F d ) ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) ) | 
						
							| 43 | 10 42 | biimtrrid |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> ( ( E. c e. NN0 A = ( a F c ) /\ E. d e. NN0 B = ( b F d ) ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) ) | 
						
							| 44 | 43 | rexlimivv |  |-  ( E. a e. ZZ E. b e. ZZ ( E. c e. NN0 A = ( a F c ) /\ E. d e. NN0 B = ( b F d ) ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) | 
						
							| 45 | 9 44 | sylbi |  |-  ( ( A e. ran F /\ B e. ran F ) -> ( ( [,] ` A ) C_ ( [,] ` B ) \/ ( [,] ` B ) C_ ( [,] ` A ) \/ ( ( (,) ` A ) i^i ( (,) ` B ) ) = (/) ) ) |