| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 |  |-  F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) | 
						
							| 2 |  | ltweuz |  |-  < We ( ZZ>= ` 0 ) | 
						
							| 3 | 2 | a1i |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> < We ( ZZ>= ` 0 ) ) | 
						
							| 4 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 5 | 4 | rabex |  |-  { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } e. _V | 
						
							| 6 | 5 | a1i |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } e. _V ) | 
						
							| 7 |  | ssrab2 |  |-  { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } C_ NN0 | 
						
							| 8 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 9 | 7 8 | sseqtri |  |-  { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } C_ ( ZZ>= ` 0 ) | 
						
							| 10 | 9 | a1i |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } C_ ( ZZ>= ` 0 ) ) | 
						
							| 11 |  | id |  |-  ( A =/= (/) -> A =/= (/) ) | 
						
							| 12 | 1 | dyadf |  |-  F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) | 
						
							| 13 |  | ffn |  |-  ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) | 
						
							| 14 |  | ovelrn |  |-  ( F Fn ( ZZ X. NN0 ) -> ( z e. ran F <-> E. a e. ZZ E. n e. NN0 z = ( a F n ) ) ) | 
						
							| 15 | 12 13 14 | mp2b |  |-  ( z e. ran F <-> E. a e. ZZ E. n e. NN0 z = ( a F n ) ) | 
						
							| 16 |  | rexcom |  |-  ( E. a e. ZZ E. n e. NN0 z = ( a F n ) <-> E. n e. NN0 E. a e. ZZ z = ( a F n ) ) | 
						
							| 17 | 15 16 | sylbb |  |-  ( z e. ran F -> E. n e. NN0 E. a e. ZZ z = ( a F n ) ) | 
						
							| 18 | 17 | rgen |  |-  A. z e. ran F E. n e. NN0 E. a e. ZZ z = ( a F n ) | 
						
							| 19 |  | ssralv |  |-  ( A C_ ran F -> ( A. z e. ran F E. n e. NN0 E. a e. ZZ z = ( a F n ) -> A. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) ) ) | 
						
							| 20 | 18 19 | mpi |  |-  ( A C_ ran F -> A. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) ) | 
						
							| 21 |  | r19.2z |  |-  ( ( A =/= (/) /\ A. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) ) -> E. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) ) | 
						
							| 22 | 11 20 21 | syl2anr |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> E. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) ) | 
						
							| 23 |  | rexcom |  |-  ( E. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) <-> E. n e. NN0 E. z e. A E. a e. ZZ z = ( a F n ) ) | 
						
							| 24 | 22 23 | sylib |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> E. n e. NN0 E. z e. A E. a e. ZZ z = ( a F n ) ) | 
						
							| 25 |  | rabn0 |  |-  ( { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } =/= (/) <-> E. n e. NN0 E. z e. A E. a e. ZZ z = ( a F n ) ) | 
						
							| 26 | 24 25 | sylibr |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } =/= (/) ) | 
						
							| 27 |  | wereu |  |-  ( ( < We ( ZZ>= ` 0 ) /\ ( { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } e. _V /\ { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } C_ ( ZZ>= ` 0 ) /\ { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } =/= (/) ) ) -> E! c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c ) | 
						
							| 28 | 3 6 10 26 27 | syl13anc |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> E! c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c ) | 
						
							| 29 |  | reurex |  |-  ( E! c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> E. c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> E. c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c ) | 
						
							| 31 |  | oveq2 |  |-  ( n = c -> ( a F n ) = ( a F c ) ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( n = c -> ( z = ( a F n ) <-> z = ( a F c ) ) ) | 
						
							| 33 | 32 | 2rexbidv |  |-  ( n = c -> ( E. z e. A E. a e. ZZ z = ( a F n ) <-> E. z e. A E. a e. ZZ z = ( a F c ) ) ) | 
						
							| 34 | 33 | elrab |  |-  ( c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } <-> ( c e. NN0 /\ E. z e. A E. a e. ZZ z = ( a F c ) ) ) | 
						
							| 35 |  | eqeq1 |  |-  ( z = w -> ( z = ( a F n ) <-> w = ( a F n ) ) ) | 
						
							| 36 |  | oveq1 |  |-  ( a = b -> ( a F n ) = ( b F n ) ) | 
						
							| 37 | 36 | eqeq2d |  |-  ( a = b -> ( w = ( a F n ) <-> w = ( b F n ) ) ) | 
						
							| 38 | 35 37 | cbvrex2vw |  |-  ( E. z e. A E. a e. ZZ z = ( a F n ) <-> E. w e. A E. b e. ZZ w = ( b F n ) ) | 
						
							| 39 |  | oveq2 |  |-  ( n = d -> ( b F n ) = ( b F d ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( n = d -> ( w = ( b F n ) <-> w = ( b F d ) ) ) | 
						
							| 41 | 40 | 2rexbidv |  |-  ( n = d -> ( E. w e. A E. b e. ZZ w = ( b F n ) <-> E. w e. A E. b e. ZZ w = ( b F d ) ) ) | 
						
							| 42 | 38 41 | bitrid |  |-  ( n = d -> ( E. z e. A E. a e. ZZ z = ( a F n ) <-> E. w e. A E. b e. ZZ w = ( b F d ) ) ) | 
						
							| 43 | 42 | ralrab |  |-  ( A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c <-> A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) | 
						
							| 44 |  | r19.23v |  |-  ( A. w e. A ( E. b e. ZZ w = ( b F d ) -> -. d < c ) <-> ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) | 
						
							| 45 | 44 | ralbii |  |-  ( A. d e. NN0 A. w e. A ( E. b e. ZZ w = ( b F d ) -> -. d < c ) <-> A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) | 
						
							| 46 |  | ralcom |  |-  ( A. d e. NN0 A. w e. A ( E. b e. ZZ w = ( b F d ) -> -. d < c ) <-> A. w e. A A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) ) | 
						
							| 47 | 45 46 | bitr3i |  |-  ( A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) <-> A. w e. A A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) ) | 
						
							| 48 |  | simplll |  |-  ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) -> A C_ ran F ) | 
						
							| 49 | 48 | sselda |  |-  ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> w e. ran F ) | 
						
							| 50 |  | ovelrn |  |-  ( F Fn ( ZZ X. NN0 ) -> ( w e. ran F <-> E. b e. ZZ E. d e. NN0 w = ( b F d ) ) ) | 
						
							| 51 | 12 13 50 | mp2b |  |-  ( w e. ran F <-> E. b e. ZZ E. d e. NN0 w = ( b F d ) ) | 
						
							| 52 | 49 51 | sylib |  |-  ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> E. b e. ZZ E. d e. NN0 w = ( b F d ) ) | 
						
							| 53 |  | rexcom |  |-  ( E. b e. ZZ E. d e. NN0 w = ( b F d ) <-> E. d e. NN0 E. b e. ZZ w = ( b F d ) ) | 
						
							| 54 |  | r19.29 |  |-  ( ( A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. d e. NN0 E. b e. ZZ w = ( b F d ) ) -> E. d e. NN0 ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) ) | 
						
							| 55 | 54 | expcom |  |-  ( E. d e. NN0 E. b e. ZZ w = ( b F d ) -> ( A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> E. d e. NN0 ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) ) ) | 
						
							| 56 | 53 55 | sylbi |  |-  ( E. b e. ZZ E. d e. NN0 w = ( b F d ) -> ( A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> E. d e. NN0 ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) ) ) | 
						
							| 57 | 52 56 | syl |  |-  ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> ( A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> E. d e. NN0 ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) ) ) | 
						
							| 58 |  | simplrr |  |-  ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> a e. ZZ ) | 
						
							| 59 | 58 | ad2antrr |  |-  ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> a e. ZZ ) | 
						
							| 60 |  | simplrr |  |-  ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> b e. ZZ ) | 
						
							| 61 |  | simp-5r |  |-  ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> c e. NN0 ) | 
						
							| 62 |  | simplrl |  |-  ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> d e. NN0 ) | 
						
							| 63 |  | simprl |  |-  ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> -. d < c ) | 
						
							| 64 |  | simprr |  |-  ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) | 
						
							| 65 | 1 59 60 61 62 63 64 | dyadmaxlem |  |-  ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> ( a = b /\ c = d ) ) | 
						
							| 66 |  | oveq12 |  |-  ( ( a = b /\ c = d ) -> ( a F c ) = ( b F d ) ) | 
						
							| 67 | 65 66 | syl |  |-  ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> ( a F c ) = ( b F d ) ) | 
						
							| 68 | 67 | exp32 |  |-  ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) -> ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) -> ( a F c ) = ( b F d ) ) ) ) | 
						
							| 69 |  | fveq2 |  |-  ( w = ( b F d ) -> ( [,] ` w ) = ( [,] ` ( b F d ) ) ) | 
						
							| 70 | 69 | sseq2d |  |-  ( w = ( b F d ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) <-> ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) | 
						
							| 71 |  | eqeq2 |  |-  ( w = ( b F d ) -> ( ( a F c ) = w <-> ( a F c ) = ( b F d ) ) ) | 
						
							| 72 | 70 71 | imbi12d |  |-  ( w = ( b F d ) -> ( ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) <-> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) -> ( a F c ) = ( b F d ) ) ) ) | 
						
							| 73 | 72 | imbi2d |  |-  ( w = ( b F d ) -> ( ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) <-> ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) -> ( a F c ) = ( b F d ) ) ) ) ) | 
						
							| 74 | 68 73 | syl5ibrcom |  |-  ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) -> ( w = ( b F d ) -> ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) ) | 
						
							| 75 | 74 | anassrs |  |-  ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ d e. NN0 ) /\ b e. ZZ ) -> ( w = ( b F d ) -> ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) ) | 
						
							| 76 | 75 | rexlimdva |  |-  ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ d e. NN0 ) -> ( E. b e. ZZ w = ( b F d ) -> ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) ) | 
						
							| 77 | 76 | a2d |  |-  ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ d e. NN0 ) -> ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> ( E. b e. ZZ w = ( b F d ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) ) | 
						
							| 78 | 77 | impd |  |-  ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ d e. NN0 ) -> ( ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) | 
						
							| 79 | 78 | rexlimdva |  |-  ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> ( E. d e. NN0 ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) | 
						
							| 80 | 57 79 | syld |  |-  ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> ( A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) | 
						
							| 81 | 80 | ralimdva |  |-  ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) -> ( A. w e. A A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> A. w e. A ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) | 
						
							| 82 | 47 81 | biimtrid |  |-  ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) -> ( A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) -> A. w e. A ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) | 
						
							| 83 | 82 | imp |  |-  ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) -> A. w e. A ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) | 
						
							| 84 | 83 | an32s |  |-  ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) /\ ( z e. A /\ a e. ZZ ) ) -> A. w e. A ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) | 
						
							| 85 |  | fveq2 |  |-  ( z = ( a F c ) -> ( [,] ` z ) = ( [,] ` ( a F c ) ) ) | 
						
							| 86 | 85 | sseq1d |  |-  ( z = ( a F c ) -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` ( a F c ) ) C_ ( [,] ` w ) ) ) | 
						
							| 87 |  | eqeq1 |  |-  ( z = ( a F c ) -> ( z = w <-> ( a F c ) = w ) ) | 
						
							| 88 | 86 87 | imbi12d |  |-  ( z = ( a F c ) -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) | 
						
							| 89 | 88 | ralbidv |  |-  ( z = ( a F c ) -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) | 
						
							| 90 | 84 89 | syl5ibrcom |  |-  ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) /\ ( z e. A /\ a e. ZZ ) ) -> ( z = ( a F c ) -> A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) | 
						
							| 91 | 90 | anassrs |  |-  ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) /\ z e. A ) /\ a e. ZZ ) -> ( z = ( a F c ) -> A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) | 
						
							| 92 | 91 | rexlimdva |  |-  ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) /\ z e. A ) -> ( E. a e. ZZ z = ( a F c ) -> A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) | 
						
							| 93 | 92 | reximdva |  |-  ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) -> ( E. z e. A E. a e. ZZ z = ( a F c ) -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) | 
						
							| 94 | 93 | ex |  |-  ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) -> ( A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) -> ( E. z e. A E. a e. ZZ z = ( a F c ) -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) ) | 
						
							| 95 | 43 94 | biimtrid |  |-  ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) -> ( A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> ( E. z e. A E. a e. ZZ z = ( a F c ) -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) ) | 
						
							| 96 | 95 | com23 |  |-  ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) -> ( E. z e. A E. a e. ZZ z = ( a F c ) -> ( A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) ) | 
						
							| 97 | 96 | expimpd |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> ( ( c e. NN0 /\ E. z e. A E. a e. ZZ z = ( a F c ) ) -> ( A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) ) | 
						
							| 98 | 34 97 | biimtrid |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> ( c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -> ( A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) ) | 
						
							| 99 | 98 | rexlimdv |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> ( E. c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) | 
						
							| 100 | 30 99 | mpd |  |-  ( ( A C_ ran F /\ A =/= (/) ) -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) |