| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 |  |-  F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) | 
						
							| 2 |  | dyadmax.2 |  |-  ( ph -> A e. ZZ ) | 
						
							| 3 |  | dyadmax.3 |  |-  ( ph -> B e. ZZ ) | 
						
							| 4 |  | dyadmax.4 |  |-  ( ph -> C e. NN0 ) | 
						
							| 5 |  | dyadmax.5 |  |-  ( ph -> D e. NN0 ) | 
						
							| 6 |  | dyadmax.6 |  |-  ( ph -> -. D < C ) | 
						
							| 7 |  | dyadmax.7 |  |-  ( ph -> ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) | 
						
							| 8 | 1 | dyadval |  |-  ( ( A e. ZZ /\ C e. NN0 ) -> ( A F C ) = <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) | 
						
							| 9 | 2 4 8 | syl2anc |  |-  ( ph -> ( A F C ) = <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ph -> ( [,] ` ( A F C ) ) = ( [,] ` <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) ) | 
						
							| 11 |  | df-ov |  |-  ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) = ( [,] ` <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) | 
						
							| 12 | 10 11 | eqtr4di |  |-  ( ph -> ( [,] ` ( A F C ) ) = ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 13 | 1 | dyadss |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) -> D <_ C ) ) | 
						
							| 14 | 2 3 4 5 13 | syl22anc |  |-  ( ph -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) -> D <_ C ) ) | 
						
							| 15 | 7 14 | mpd |  |-  ( ph -> D <_ C ) | 
						
							| 16 | 5 | nn0red |  |-  ( ph -> D e. RR ) | 
						
							| 17 | 4 | nn0red |  |-  ( ph -> C e. RR ) | 
						
							| 18 | 16 17 | eqleltd |  |-  ( ph -> ( D = C <-> ( D <_ C /\ -. D < C ) ) ) | 
						
							| 19 | 15 6 18 | mpbir2and |  |-  ( ph -> D = C ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ph -> ( B F D ) = ( B F C ) ) | 
						
							| 21 | 1 | dyadval |  |-  ( ( B e. ZZ /\ C e. NN0 ) -> ( B F C ) = <. ( B / ( 2 ^ C ) ) , ( ( B + 1 ) / ( 2 ^ C ) ) >. ) | 
						
							| 22 | 3 4 21 | syl2anc |  |-  ( ph -> ( B F C ) = <. ( B / ( 2 ^ C ) ) , ( ( B + 1 ) / ( 2 ^ C ) ) >. ) | 
						
							| 23 | 20 22 | eqtrd |  |-  ( ph -> ( B F D ) = <. ( B / ( 2 ^ C ) ) , ( ( B + 1 ) / ( 2 ^ C ) ) >. ) | 
						
							| 24 | 23 | fveq2d |  |-  ( ph -> ( [,] ` ( B F D ) ) = ( [,] ` <. ( B / ( 2 ^ C ) ) , ( ( B + 1 ) / ( 2 ^ C ) ) >. ) ) | 
						
							| 25 |  | df-ov |  |-  ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) = ( [,] ` <. ( B / ( 2 ^ C ) ) , ( ( B + 1 ) / ( 2 ^ C ) ) >. ) | 
						
							| 26 | 24 25 | eqtr4di |  |-  ( ph -> ( [,] ` ( B F D ) ) = ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 27 | 7 12 26 | 3sstr3d |  |-  ( ph -> ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) C_ ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 28 | 2 | zred |  |-  ( ph -> A e. RR ) | 
						
							| 29 |  | 2nn |  |-  2 e. NN | 
						
							| 30 |  | nnexpcl |  |-  ( ( 2 e. NN /\ C e. NN0 ) -> ( 2 ^ C ) e. NN ) | 
						
							| 31 | 29 4 30 | sylancr |  |-  ( ph -> ( 2 ^ C ) e. NN ) | 
						
							| 32 | 28 31 | nndivred |  |-  ( ph -> ( A / ( 2 ^ C ) ) e. RR ) | 
						
							| 33 | 32 | rexrd |  |-  ( ph -> ( A / ( 2 ^ C ) ) e. RR* ) | 
						
							| 34 |  | peano2re |  |-  ( A e. RR -> ( A + 1 ) e. RR ) | 
						
							| 35 | 28 34 | syl |  |-  ( ph -> ( A + 1 ) e. RR ) | 
						
							| 36 | 35 31 | nndivred |  |-  ( ph -> ( ( A + 1 ) / ( 2 ^ C ) ) e. RR ) | 
						
							| 37 | 36 | rexrd |  |-  ( ph -> ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* ) | 
						
							| 38 | 28 | lep1d |  |-  ( ph -> A <_ ( A + 1 ) ) | 
						
							| 39 | 31 | nnred |  |-  ( ph -> ( 2 ^ C ) e. RR ) | 
						
							| 40 | 31 | nngt0d |  |-  ( ph -> 0 < ( 2 ^ C ) ) | 
						
							| 41 |  | lediv1 |  |-  ( ( A e. RR /\ ( A + 1 ) e. RR /\ ( ( 2 ^ C ) e. RR /\ 0 < ( 2 ^ C ) ) ) -> ( A <_ ( A + 1 ) <-> ( A / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 42 | 28 35 39 40 41 | syl112anc |  |-  ( ph -> ( A <_ ( A + 1 ) <-> ( A / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 43 | 38 42 | mpbid |  |-  ( ph -> ( A / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) | 
						
							| 44 |  | ubicc2 |  |-  ( ( ( A / ( 2 ^ C ) ) e. RR* /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* /\ ( A / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) -> ( ( A + 1 ) / ( 2 ^ C ) ) e. ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 45 | 33 37 43 44 | syl3anc |  |-  ( ph -> ( ( A + 1 ) / ( 2 ^ C ) ) e. ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 46 | 27 45 | sseldd |  |-  ( ph -> ( ( A + 1 ) / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 47 | 3 | zred |  |-  ( ph -> B e. RR ) | 
						
							| 48 | 47 31 | nndivred |  |-  ( ph -> ( B / ( 2 ^ C ) ) e. RR ) | 
						
							| 49 |  | peano2re |  |-  ( B e. RR -> ( B + 1 ) e. RR ) | 
						
							| 50 | 47 49 | syl |  |-  ( ph -> ( B + 1 ) e. RR ) | 
						
							| 51 | 50 31 | nndivred |  |-  ( ph -> ( ( B + 1 ) / ( 2 ^ C ) ) e. RR ) | 
						
							| 52 |  | elicc2 |  |-  ( ( ( B / ( 2 ^ C ) ) e. RR /\ ( ( B + 1 ) / ( 2 ^ C ) ) e. RR ) -> ( ( ( A + 1 ) / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) <-> ( ( ( A + 1 ) / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) ) | 
						
							| 53 | 48 51 52 | syl2anc |  |-  ( ph -> ( ( ( A + 1 ) / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) <-> ( ( ( A + 1 ) / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) ) | 
						
							| 54 | 46 53 | mpbid |  |-  ( ph -> ( ( ( A + 1 ) / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 55 | 54 | simp3d |  |-  ( ph -> ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) | 
						
							| 56 |  | lediv1 |  |-  ( ( ( A + 1 ) e. RR /\ ( B + 1 ) e. RR /\ ( ( 2 ^ C ) e. RR /\ 0 < ( 2 ^ C ) ) ) -> ( ( A + 1 ) <_ ( B + 1 ) <-> ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 57 | 35 50 39 40 56 | syl112anc |  |-  ( ph -> ( ( A + 1 ) <_ ( B + 1 ) <-> ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 58 | 55 57 | mpbird |  |-  ( ph -> ( A + 1 ) <_ ( B + 1 ) ) | 
						
							| 59 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 60 | 28 47 59 | leadd1d |  |-  ( ph -> ( A <_ B <-> ( A + 1 ) <_ ( B + 1 ) ) ) | 
						
							| 61 | 58 60 | mpbird |  |-  ( ph -> A <_ B ) | 
						
							| 62 |  | lbicc2 |  |-  ( ( ( A / ( 2 ^ C ) ) e. RR* /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* /\ ( A / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) -> ( A / ( 2 ^ C ) ) e. ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 63 | 33 37 43 62 | syl3anc |  |-  ( ph -> ( A / ( 2 ^ C ) ) e. ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 64 | 27 63 | sseldd |  |-  ( ph -> ( A / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 65 |  | elicc2 |  |-  ( ( ( B / ( 2 ^ C ) ) e. RR /\ ( ( B + 1 ) / ( 2 ^ C ) ) e. RR ) -> ( ( A / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) <-> ( ( A / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) /\ ( A / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) ) | 
						
							| 66 | 48 51 65 | syl2anc |  |-  ( ph -> ( ( A / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) <-> ( ( A / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) /\ ( A / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) ) | 
						
							| 67 | 64 66 | mpbid |  |-  ( ph -> ( ( A / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) /\ ( A / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) | 
						
							| 68 | 67 | simp2d |  |-  ( ph -> ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) ) | 
						
							| 69 |  | lediv1 |  |-  ( ( B e. RR /\ A e. RR /\ ( ( 2 ^ C ) e. RR /\ 0 < ( 2 ^ C ) ) ) -> ( B <_ A <-> ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) ) ) | 
						
							| 70 | 47 28 39 40 69 | syl112anc |  |-  ( ph -> ( B <_ A <-> ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) ) ) | 
						
							| 71 | 68 70 | mpbird |  |-  ( ph -> B <_ A ) | 
						
							| 72 | 28 47 | letri3d |  |-  ( ph -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) | 
						
							| 73 | 61 71 72 | mpbir2and |  |-  ( ph -> A = B ) | 
						
							| 74 | 19 | eqcomd |  |-  ( ph -> C = D ) | 
						
							| 75 | 73 74 | jca |  |-  ( ph -> ( A = B /\ C = D ) ) |